Over last decades, several studies have been focused on
short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m-2 s-1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30-40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment., K. Balarinová, M. Barták, J. Hazdrová, J. Hájek, J. Jílková., and Obsahuje bibliografii
Chlorophyll (Chl) α fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM-F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl α fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl α fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance., A. Stirbet, D. Lazár, J. Kromdijk, Govindjee., and Obsahuje bibliografické odkazy
The impact of drought stress (DS) on eight Eurasian and North African genotypes of wild barley (Hordeum spontaneum) was evaluated by analysis of chlorophyll (Chl) a fluorescence fast induction curves using the JIP-test. Three-week-old, pot-grown plants were exposed to a DS treatment by withholding water for nine days. The genotype-specific impairment of the functionality of the photosynthetic electron transport chain was quantified using the relative decline of the performance indices (PIabs and PItot), two key parameters of the JIP-test. The genotypes showing the highest (HOR10164) and lowest (HOR10710) relative PIs under DS were subjected to additional experiments, including measurements of leaf gas exchange, water status, pigment content, key enzyme activity, and protein abundance. The genotypes showed a specific profile of DS-mediated inhibition of photosynthesis, associated with higher relative leaf water contents in HOR10164 at the end of the treatment. Whereas decreased photosynthetic rate in HOR10164 was mainly caused by stomatal closure, nonstomatal limitations (decreased Rubisco content and activity) were detected in HOR10710. Additional genotype specific features were the upregulation of the NADP-malate dehydrogenase in HOR10164 and a decreased fraction of QA-reducing reaction centers in HOR10710., C. Jedmowski, S. Bayramov, W. Brüggemann., and Obsahuje bibliografii
Chlorophyll (Chl) a fluorescence transient and 820-nm transmission kinetic were investigated to explore the development of photosynthetic apparatus in grapevine leaves from emergence to full expansion. In this study, all leaves at various developing stages exhibited typical Chl a fluorescence transient. In newly initiating leaves, the maximum quantum yield of primary photochemistry (ϕP0) was slightly lower (<10 %) than that in fully expanded leaves. Nevertheless, the fluorescence rise from O to J step was clearly speeded up in young leaves compared with that in fully expanded leaves. Additionally, a distinct K step appeared in young leaves at high irradiances. With leaf development, the efficiency that a trapped exciton can move an electron into the electron transport chain further than QA - (Ψ0), the quantum yield of electron transport beyond QA (ϕE0), electron transport flux per excited cross section (ET0/CS0), the amount of active photosystem (PS) 2 reaction centres per excited cross section (RC/CS0), and the performance index on cross section basis (PICS) increased gradually and rapidly. Young leaves had strikingly lower amplitude of transmission at 820 nm. A linear relationship between Ψ0 and the transmission at 820 nm (I30/I0) was evident. Based on these data, we suggest that (1) the primary photochemistry of PS2 may be not the limiting step of the photosynthetic capacity during leaf growth under natural irradiance; (2) oxygen evolving complex (OEC) might be not fully connected to PS2 at the beginning of leaf growth; (3) though there are a few functional PS1 and PS2 at the early stages of leaf development, they match perfectly. and C.-D. Jiang ... [et al.].
Drought stress has multiple effects on the photosynthetic apparatus. Herein, we aimed to study the effect of drought stress on fluorescence characteristics of PSII in leaves of Plectranthus scutellarioides and explore potentially underlying mechanisms. Plants of P. scutellarioides were grown in a greenhouse and subjected to drought (DS, drought-stressed) or daily irrigation (control group). Leaf chlorophyll (Chl) index and induction kinetics curves of Chl a fluorescence and the JIP-test were used to evaluate effects of drought lasting for 20 d. Our results showed that both the leaf and soil relative water content decreased with increasing treatment duration. The leaf Chl index was reduced to half in the DS plants compared with the control group after 20 d. The minimal fluorescence in the DS plants was higher than that in the control plants after 10 d of the treatment. Maximum photochemical efficiency and lateral reactivity decreased with increasing treatment duration in the DS plants. With the continuing treatment, values of absorption flux per reaction center (RC), trapped energy flux per RC, dissipated energy flux per RC, and electron transport flux per RC increased in the earlier stage in the DS plants, while obviously decreased at the later stage of the treatment. In conclusion, drought stress inhibited the electron transport and reduced PSII photochemical activity in leaves of P. scutellarioides., L.-L. Meng, J.-F. Song, J. Wen, J. Zhang, J.-H. Wei., and Seznam literatury
The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H3BO3) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85., M. T. Öz, Ö. Turan, C. Kayihan, F. Eyidoğan, Y. Ekmekçi, M. Yücel, H. A. Öktem., and Obsahuje bibliografii
Unfavourable growth conditions significantly determine the yield of crop plants. Intraspecific competition is a condition in which plants compete with each other for environmental resources. An excessive density contributes to increased competition within species, which results in disruption of photosynthesis process. According to this idea, experiments were conducted to investigate the photosynthetic response of potato (Solanum tuberosum) plants to excessive congestion. Two potato varieties of different earliness classes (Vineta and Satina) were used to evaluate the efficiency of the photosynthetic apparatus based on chlorophyll (Chl) fluorescence measurements under stress conditions. Changes in Chl contents of the tested plants were also analysed. In relation to intraspecific competition, we can conclude that the Vineta variety was less sensitive to this stress factor. In contrast, the photosynthetic apparatus of the Satina variety showed less efficient functioning under these conditions. In this study, the application of Chl fluorescence was presented for the first time in order to analyse the effects of intraspecific competition in plants., J. Olechowicz, C. Chomontowski, P. Olechowicz, S. Pietkiewicz, A. Jajoo, M. H. Kalaji., and Obsahuje bibliografii
Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3- level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress., Y. Mohsenian ... [et al.]., and Obsahuje bibliografii
In an experimental site for reforestation of degraded area, three-year-old plants of Bertholletia excelsa Humb. & Bonpl. were subjected to different fertilization treatments: T0 = unfertilized control, T1 = green fertilization (branches and leaves) and T2 = chemical fertilization. Higher net photosynthetic rates (PN) were observed in T1 [13.2±1.0 μmol(CO2) m-2 s-1] compared to T2 [8.0±1.8 μmol(CO2) m-2 s-1] and T0 [4.8±1.3 μmol(CO2) m-2 s-1]. Stomatal conductance (g s), transpiration rate (E) and water use efficiency (WUE) of individuals of T1 and T2 did not differ significantly, however, they were by 88, 55 and 63%, respectively, higher in T1 than in the control. The mean values of variable fluorescence (Fv), performance index (P.I.) and total chlorophyll [Chl (a+b)] were higher in T1. Our results indicate that green fertilization improves photosynthetic structure and function in plants of B. excelsa in young phase. and M. J. Ferreira, J. F. C. Gonçalves, J. B. S. Ferraz.
WN6 (a stay-green wheat cultivar) and JM20 (control) were used to evaluate the effects of exogenous cytokinin on photosynthetic capacity and antioxidant enzymes activities in flag leaves. Results showed that WN6 reached the higher grain mass, which was mainly due to the higher photosynthetic rate resulting from the higher maximal quantum yield of PSII photochemistry (ΦPSII) and probability that a trapped exaction transfers an electron into the electron transport chain beyond QA (Ψo), and lower relative variable fluorescence intensity at the J-step (Vj). Exogenous 6-benzylaminopurine (6-BA) enhanced antioxidant enzymes activities and decreased malondialdehyde (MDA) content. Enhanced Ψo and electron transport rate (ETR), and decreased Vj contributed to improved photosynthetic rate in the 6-BA treatment. In addition, exogenous 6-BA significantly increased endogenous zeatin (Zt) content, which was significantly and positively correlated with the antioxidant enzyme activity and ΦPSII, implying that higher Zt content was responsible for the improved antioxidant status and photosynthetic performance., D. Q. Yang, Y. L. Luo, W. H. Dong, Y. P. Yin, Y. Li, Z. L. Wang., and Obsahuje bibliografii