Drought stress has multiple effects on the photosynthetic apparatus. Herein, we aimed to study the effect of drought stress on fluorescence characteristics of PSII in leaves of Plectranthus scutellarioides and explore potentially underlying mechanisms. Plants of P. scutellarioides were grown in a greenhouse and subjected to drought (DS, drought-stressed) or daily irrigation (control group). Leaf chlorophyll (Chl) index and induction kinetics curves of Chl a fluorescence and the JIP-test were used to evaluate effects of drought lasting for 20 d. Our results showed that both the leaf and soil relative water content decreased with increasing treatment duration. The leaf Chl index was reduced to half in the DS plants compared with the control group after 20 d. The minimal fluorescence in the DS plants was higher than that in the control plants after 10 d of the treatment. Maximum photochemical efficiency and lateral reactivity decreased with increasing treatment duration in the DS plants. With the continuing treatment, values of absorption flux per reaction center (RC), trapped energy flux per RC, dissipated energy flux per RC, and electron transport flux per RC increased in the earlier stage in the DS plants, while obviously decreased at the later stage of the treatment. In conclusion, drought stress inhibited the electron transport and reduced PSII photochemical activity in leaves of P. scutellarioides., L.-L. Meng, J.-F. Song, J. Wen, J. Zhang, J.-H. Wei., and Seznam literatury
The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H3BO3) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85., M. T. Öz, Ö. Turan, C. Kayihan, F. Eyidoğan, Y. Ekmekçi, M. Yücel, H. A. Öktem., and Obsahuje bibliografii
The effects of ambient levels of ozone and summer drought were assessed on a poplar clone (Populus maximowiczii Henry X P. × berolinensis Dippel - Oxford clone) in an open top chamber experiment carried out at the Curno facilities (Northern Italy). Chlorophyll (Chl) a fluorescence parameters (from both modulated and direct fluorescence) were assessed at different hours of the day (predawn, morning, midday, afternoon, and evening), from June to August 2008. This paper compares the results from predawn (PD, before sunrise) and afternoon (AN, in full sunlight) measurements, in order to evaluate the role of high sunlight as a factor influencing responses to ozone stress. Sunlight affected the maximum quantum yield of primary photochemistry (decrease of Fv/Fm) thus indicating photoinhibition. The effective quantum yield (ΦPSII) and the photochemical quenching (qP) were enhanced in the afternoon with respect to the predawn, whereas the nonphotochemical quenching (NPQ) was reduced. The effect of ozone was detected with fluorescence on well watered plants in the first week of July, before the onset of visible symptoms. As far as Fv/Fm are concerned, the differences between ozone-treated and control plants were statistically significant in the predawn, but not in the afternoon. Ozone exerted only minor effects on drought exposed plants because of the reduced stomatal ozone uptake, but effects on the IP phase of the fluorescence transient were observed also in drought-stressed plants., R. Desotgiu ... [et al.]., and Obsahuje bibliografii
The objective of this study was to evaluate the significance of blue light (B) in the growth and photosynthetic capacity of cucumber. Gas exchange, chlorophyll (Chl) fluorescence kinetics, chloroplast ultrastructure, and leaf growth were investigated to explore the influence of three different light qualities of light emitting diodes (LEDs) on plant morphogenesis and the development of photosynthetic apparatus in cucumber (Cucumis sativus) leaves from emergence to full expansion under weak light [50 μmol(photon) m-2 s-1]. We found that B could significantly increase the leaf area (LA), shoot elongation, Chl a/b, net photosynthetic rate, and stomatal conductance (g s). In addition, the comparisons of maximal quantum yield of PSII photochemistry and the photosynthetic performance index between B-, W (white light)-, and R (red light)-grown leaves suggested that B was essential for the development of photosynthetic apparatus under weak light. B-grown leaves had the lowest Chl content under weak light, however, they had well-developed chloroplasts with the highest degree of stacked lamellae and the lowest starch accumulation. This could explain to a considerable extent the highest net photosynthetic rate per Chl unit. The results demonstrated that B optimized photosynthetic performance by improving the photosynthetic rate, increasing LA, and prolonging active photosynthesis duration under low irradiance. Therefore B is necessary to ensure healthy development of chloroplasts and highly efficient photosynthetic functions in cucumbers under a weak light environment. More importantly, our study also provided theoretical and technical support for the development of light environmental control technology., X. Y. Wang, X. M. Xu, J. Cui., and Obsahuje bibliografii