We provide here a general introduction on chlorophyll (Chl) a fluorescence, then we present our measurements on fast (< 1 s) induction curves (the so-called OJIP transients) on dark-adapted intact leaves of Arabidopsis thaliana, under five different light intensities [in the range of ~ 500 to ~ 3,000 µmol(photons) m‒2 s‒1] using two different instruments: Handy PEA (Hansatech Instruments, UK; excitation light, 650 nm) and FluorPen (model FP-110; Photon Systems Instruments, The Czech Republic; excitation light, 470 nm). We then discuss the observed differences in the OJIP curves, as well as in Fo (F20μs, F50μs, or the extrapolated Ft→0), FP (the peak), and the ratios FP/Fo, and Fv (= FP ‒ Fo)/FP in terms of differences in excitation light intensity and absorptance (or absorbance) of the excitation light by the leaves, and other factors, as well as the data available in the literature. We suggest that such measurements be accompanied, in the future, by parallel measurements on Chl a fluorescence imaging, an area pioneered by Hartmut K. Lichtenthaler., B. Padhi, G. Chauhan, D. Kandoi, A. Stirbet, B. C. Tripathy, G. Govindjee., and Obsahuje bibliografické odkazy
Chlorophyll (Chl) α fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM-F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl α fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl α fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance., A. Stirbet, D. Lazár, J. Kromdijk, Govindjee., and Obsahuje bibliografické odkazy
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.