The effects of exogenous sodium nitroprusside (SNP), as nitric oxide donor, and spermidine (Spd) on growth and photosynthetic characteristics of Bakraii seedlings (Citrus reticulata x Citrus limetta) were studied under NaCl stress. In citrus plants, SNP- and Spd-induced growth improvement was found to be associated with reduced electrolyte leakage, malondialdehyde, hydrogen peroxide content, and leaf Na+ and Cl- concentration. However, we found increased leaf Ca2+, Mg2+, and K+ concentrations, relative water content, chlorophyll fluorescence parameters, antioxidant enzyme activities, such as ascorbate peroxidase, catalase, superoxide dismutase and peroxidase, as well as higher photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate under saline regime. Foliar application of SNP and Spd alone mitigated the adverse effect of salinity, while the combined application proved to be even more effective., D. Khoshbakht, M. R. Asghari, M. Haghighi., and Obsahuje bibliografii
Unfavourable growth conditions significantly determine the yield of crop plants. Intraspecific competition is a condition in which plants compete with each other for environmental resources. An excessive density contributes to increased competition within species, which results in disruption of photosynthesis process. According to this idea, experiments were conducted to investigate the photosynthetic response of potato (Solanum tuberosum) plants to excessive congestion. Two potato varieties of different earliness classes (Vineta and Satina) were used to evaluate the efficiency of the photosynthetic apparatus based on chlorophyll (Chl) fluorescence measurements under stress conditions. Changes in Chl contents of the tested plants were also analysed. In relation to intraspecific competition, we can conclude that the Vineta variety was less sensitive to this stress factor. In contrast, the photosynthetic apparatus of the Satina variety showed less efficient functioning under these conditions. In this study, the application of Chl fluorescence was presented for the first time in order to analyse the effects of intraspecific competition in plants., J. Olechowicz, C. Chomontowski, P. Olechowicz, S. Pietkiewicz, A. Jajoo, M. H. Kalaji., and Obsahuje bibliografii
The effects of polyamines (PAs) on salt stress in Bakraii (Citrus reticulata × Citrus limetta) seedlings were studied. Foliar treatments by putrescine (Put), spermidine (Spd), and spermine (Spm) (0, 0.5, and 1 mM) were applied during the salinity period
(0 and 75 mM of NaCl). PA-treated seedlings showed a lower content of Na+ and Cl- in leaves. Application of PAs increased net photosynthetic rate in salt-stressed plants and it contributed to the enhanced growth parameters. PAs application considerably induced growth improvement in Bakraii seedlings which was found to be associated with reduced electrolyte leakage, increased relative water content, chlorophyll fluorescence parameters, activities of key antioxidant enzymes, as well as increased photosynthetic pigment concentration under saline regime. These results showed the promising use of PAs, especially of Spd and Spm, for reducing the negative effects of salinity stress and improving the growth of citrus seedlings., D. Khoshbakht, M. R. Asghari, M. Haghighi., and Obsahuje bibliografii
Alkalies are important agricultural contaminants complexly affecting plant metabolism. In this study, rice seedlings were subjected to alkaline stress (NaHCO3:Na2CO3 = 9:1; pH 8.9) for 30 days. The results showed that stress mightily reduced net photosynthetic rate (PN), but slightly decreased transpiration rate and stomatal conductance. This indicated that decline of PN might be a result of nonstomatal factors. Alkaline stress caused a large accumulation of Na+ in leaves up to toxic concentration, which possibly affected chloroplast ultrastructure and photosynthesis. We found that alkaline stress reduced chlorophyll fluorescence parameters, such as ratios of Fv′/Fm′, Fv/Fm, photosystem (PS) II efficiency, and electron transport rates in rice plants, i.e. it influenced the efficiencies of photon capture and electron transport by PSII. This might be a main reason for the decrease of PN under such conditions. Deficiency of minerals could be another reason for the decline of PN. Alkaline stress lowered contents of N, K, Cu, Zn, P, and Fe in rice plants. In addition, the stress strongly affected metabolism of amino acids. This might be caused by imbalance in carbon metabolism as a result of photosynthesis reduction., Z.-H. Wu, C.-W. Yang, M.-Y. Yang., and Obsahuje bibliografii
Tomato samples were collected from the field of Absheron peninsula in Azerbaijan in order to evaluate the incidence of main Tobamoviruses. According to results of serological and molecular tests, Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), and Pepper mild mottle virus (PMMoV) were detected as single and mixed infections (TMV + PMMoV; ToMV + PMMoV) in various tomato samples. It was found that Tobamovirus infection caused an increase in the content of malondialdehyde, alterations in the activities of peroxidase enzymes and quantitative and qualitative changes in their molecular isoforms. A comparison of thylakoid membrane polypeptides from virus-infected leaves indicated a decrease in the content of the thylakoid membrane polypeptides with molecular masses of 123, 55, 47, 33, 28-24, 17, and 15 kD. PSII efficiency and the content of chlorophylls (a and b) were significantly lower in the virus-infected leaves., I. M. Huseynova, S. M. Mirzayeva, N. F. Sultanova, D. R. Aliyeva, N. Sh. Mustafayev, J. A. Aliyev., and Obsahuje bibliografii