To test the hypothesis that neonatal GLP-1 exposure may program myosin heavy chain (MyHC) composition in adult skeletal muscle, two-day-old rats were transfected intramuscularly with vacant vector plasmid (VP), or recombinant plasmid expressing secretory GLP-1 at the doses of 60 μg (LG) and 120 μg (HG), respectively. Expression of GLP-1 mRNA was detected in muscles of both LG and HG rats 7 days after transfection, with more abundant GLP-1 transcript seen in LG rats. In accordance with the GLP-1 expression, LG rats demonstrated more significant responses to neonatal GLP-1 exposure. Small yet significant growth retardation was observed in LG rats, which is accompanied with significantly reduced serum insulin concentration at 8 weeks of age compared to VP rats. The responses of skeletal muscle were dependent on muscle type. Significant increase of PGC-1α and GLUT4 mRNA expression was detected in soleus of LG rats, whereas a MyHC type switch from ⅡB to Ⅰ was seen in gastrocnemius. These results indicate that neonatal exposure of healthy pups to ectopic GLP-1 causes growth retardation with decreased serum insulin as well as muscle type-dependent modifications in MyHC type composition and metabolic gene expression in adult rats., L. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The key regulatory enzymes of kidney ammoniagenesis appear to be P-dependent (PDG) and P-independent (PIG) glutaminases. While the participation of PDG has been satisfactorily elucidated, the significance of PIG remains doubtful. Rat kidney cortex slices synthesized ammonia even under basal conditions. Metabolic acidosis, hippurate and insulin stimulated ammonia production. Under basal conditions, PDG activity in kidney homogenate, was twice as high as PIG activity. Metabolic acidosis stimulated ammonia production by the stimulation of both PDG (100 %) and PIG (57 %) activities. Hippurate stimulated only PIG activity both under basal conditions (90 %) and in metabolic acidosis (52 %), while it inhibited PDG activity only insignificantly under basal conditions and markedly (53 %) in metabolic acidosis. Insulin stimulated both PIG and PDG activities under basal conditions as well as in metabolic acidosis and potentiated the PIG stimulation by hippurate while it potentiated the hippurate inhibition of PDG both under basal conditions and in acidotic rats. In conclusion, both PDG and PIG participate in ammoniagenesis and are stimulated by metabolic acidosis and insulin. Hippurate stimulates PIG, while it inhibits PDG in metabolic acidosis and even after insulin administration. The effect of hippurate appears to be of physiological interest.
The impact of anesthetic agen ts on endocrine and metabolic factors is an important issue. The present study has compared the effects of a short-term exposure to diethyl ether, isoflurane, or CO2 on plasma corticosterone, insulin and glucose concentrations since the duration of anesthetic exposure may have an effect on those factors. Male rats were divided into fed and fasted groups. The experimental rats were briefly exposed to diethyl ether, isoflurane, or CO2 (the degree of anesthesia was identical), while a control group was not exposed to the anesthetics. In the fed rats, diethyl ether exposure increased the levels of plasma glucose. CO2 exposure decreased plasma corticosterone and increased plasma glucose levels. Isoflurane exposure caused no changes in plasma corticosterone, glucose, or insulin levels. In the fasted rats, diethyl ether exposure increased plasma corticosterone and reduced plasma insulin levels. The plasma corticosterone and insulin levels were significantly increased by CO2 exposure. Isoflurane exposure decreased plasma insulin levels. A brief exposure to either diethyl ether or CO2 changed the plasma corticosterone, glucose, and insulin levels in fed and/or fasted rats. However, isoflurane exposure had the least effect on the concentration of these factors in both the fed and fasted states., H. Zardooz, F. Rostamkhani, J. Zaringhalam, F. Faraji Shahrivar., and Obsahuje bibliografii
Free fatty acids (FFAs) are natural ligands of the PPARγ2 receptor. FFA plasma concentration and composition may represent one of the factors accounting for high heterogeneity of conclusions concerning the effect of the Pro12Ala on BMI, insulin sensitivity or diabetes type 2 (DM2) susceptibility. Our objective was to investigate the relation and possible interactions between the Pro12Ala polymorphism and FFA status, metabolic markers, and body composition in 324 lean nondiabetic subjects (M/F: 99/225; age 32±11 years; BMI 23.9±4.0 kg/m2) with and without family history of DM2. Family history of DM2 was associated with lower % PUFA and slightly higher % MUFA. The presence of Pro12Ala polymorphism was not associated with fasting plasma FFA concentration or composition, anthropometric or metabolic markers of glucose and lipid metabolism in tested population. However, the interaction of carriership status with FFA levels influenced the basal glucose levels, insulin sensitivity and disposition indices, triglycerides, HDL-cholesterol and leptin levels, especially in women. The metabolic effects of 12Ala carriership were influenced by FFA levels – the beneficial role of 12Ala was seen only in the presence of low concentration of plasma FFA. Surprisingly, a high PUFA/SFA ratio was associated with lower insulin sensitivity, the protective effect of 12Ala allele was apparent in subjects with family history of DM2. On the basis of our findings and published data we recommend the genotyping of diabetic patients for Pro12Ala polymorphism of the PPARγ2 gene before treatment with thiazolidinediones and education of subjects regarding diet and physical activity, which modulate metabolic outcomes., B. Bendlová, D. Vejražková, J. Včelák, P. Lukášová, D. Burkoňová, M. Kunešová, J. Vrbíková, K. Dvořáková, K. Vondra, M. Vaňková., and Obsahuje bibliografii a bibliografické odkazy
To investigate the significance of impaired insulin secretion on preimplantation embryo development, outbred ICR female mice received a single injection of streptozotocin 130 mg (low) and 160 mg (subdiabetic) kg-1, 14-17 days before fertilization. Preimplantation embryos were collected on day 3 of pregnancy, four to eight-cell embryos were cultured in vitro 48 h (day 5) and their cell number was estimated. After spontaneous ovulation, the significantly different distribution pattern in comparison with the controls was detected only in preimplantation embryos isolated from subdiabetic (160 mg.kg-1 streptozotocin) mice. Furthermore, the incidence of degenerated embryos was significantly increased after 48 h in vitro cultivation. The analysis of cell number distribution in embryos after cultivation in vitro indicated a significant delay in cell proliferation in both experimental groups (130 and 160 mg.kg-1 streptozotocin) in comparison with control mice. After superovulation, the only significant difference was foTund in the distribution pattern of embryos isolated on day 3 of pregnancy from subdiabetic (160 mg.kg-1 streptozotocin) mice. No significant differences were found after embryo cultivation in vitro. It could be concluded th at, in outbred ICR mice, lower streptozotocin treatment (130 mg.kg-1) influenced only cell distribution of in vitro cultured embryos after spontaneous ovulation. In ICR mice, marked changes in preimplantation embryo development were detected only after subdiabetic (160 mg.kg-1) streptozotocin treatment. During in vitro cultivation delayed effects of impaired insulin secretion resulted in an increase of embryo degeneration at the time after the third mitotic cleavage. Our results indicate that the effects of impaired maternal insulin secretion on preimplantation embryo development in mice are marked and consistent after spontaneous ovulation. Suiperovulation apparently disguises subtle changes in preimplantation embryo development after low and subdiabetic streptozotocin treatment.
Cholesterol 7α-hydroxylase (CYP7A1), the key regulatory enzyme of bile acid synthesis, displays a pronounced diurnal variation. To better understand the regulation of CYP7A1 activity, three daylong examinations were carried out in 12 healthy men. The concentrations of 7α-hydroxycholest-4-en-3-one (C4), a surrogate marker of CYP7A1 activity, bile acids (BA), insulin, glucose, nonesterified fatty acids, triglycerides, and cholesterol were measured in serum in 90-min intervals from 7 AM till 10 PM. To lower and to increase BA concentration during the study, the subjects received cholestyramine and chenodeoxycholic acid (CDCA), respectively, in two examinations. No drug was used in the control examination. There was a pronounced diurnal variation of C4 concentration with a peak around 1 PM in most of the subjects. The area under the curve (AUC) of C4 concentration was five times higher and three times lower when subjects were treated with cholestyramine and CDCA, respectively. No relationship was found between AUC of C4 and AUC of BA concentration, but AUC of C4 correlated positively with that of insulin. Moreover, short-term treatment with cholestyramine resulted in about 10 % suppression of glycemia throughout the day. Our results suggest that insulin is involved in the regulation of diurnal variation of CYP7A1 activity in humans., J. Kovář ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Akt kinase regulates numerous cell functions including glucose metabolism, cell growth, survival, protein synthesis, and control of local hemodynamics. mTOR is one of down-stream effectors of Akt involved in the initiation of protein translation. However, renal Akt signaling in Type 1 diabetes (DM) in vivo, in particular under the conditions reflecting differences in metabolic control, has received less attention. Renal cortical activity and expression of Akt and mTOR (kinase assay, western blotting) were determined in streptozotocin-diabetic rats (D) with different levels of glycemic control (blood glucose 22.0± 1.0, 13.4±1.5, 8.1±0.4 mmol/l, p<0.05 between the groups), achieved by varying insulin treatment (0,4 and 12 IU/day), and in control rats with (C4) or without (C) chronic insulin administration. Renal Akt activity was reduced in D rats without insulin treatment and severe hyperglycemia (D-0, -62 %, p<0.01 vs. C), partially restored in moderately hypergly cemic rats (D-4, -30 %, p<0.05 vs. C), and normalized in D rats with intensive insulin and tight metabolic control (D-12). Expression of active mTOR paralleled Akt activity in D-0 (-51 %, p<0.01 vs. C), but not in D-4 and D- 12 that demonstrated increases in active mTOR (+55 %, +80 % resp., p<0.05) as compared to C. Moreover, insulin activated renal Akt (+82 %, p<0.01), but not mTOR in C4. In conclusion, glycemic control and intensity of insulin treatment are important modulators of renal Akt and mTOR activity in diabetes. While Akt activity is reversible by tight metabolic control, combination of hyperglycemia and insulin treatment resulted in enhancement of mTOR activity. In addition to Akt, other signaling pathways likely contribute to regulation of renal mTOR activity in diabetes., J. Ždychová, J. Veselá, L. Kazdová, R. Komers., and Obsahuje bibliografii a bibliografické odkazy
Reprogramming of non-endocrine pancreatic cells into
insulin-producing cells represents a promising therapeutic approach for the restoration of endogenous insulin production in diabetic patients. In this paper, we report that human organoid cells derived from the pancreatic tissue can be reprogrammed into the insulin-producing cells (IPCs) by the combination of in vitro transcribed modified mRNA encoding transcription factor neurogenin 3 and small molecules modulating the epigenetic state and signalling pathways. Upon the reprogramming, IPCs formed 4.6 ± 1.2 % of the total cells and expressed typical markers (insulin, glucokinase, ABCC8, KCNJ11, SLC2A2, SLC30A8) and transcription factors (PDX1, NEUROD1, MAFA, NKX2.2, NKX6.1, PAX4, PAX6) needed for the proper function of pancreatic β-cells. Additionally, we have revealed a positive effect of ALK5 inhibitor RepSox on the overall reprogramming efficiency. However, the reprogrammed IPCs possessed only a partial insulin-secretory capacity, as they were not able to respond to the changes in the extracellular glucose concentration by increasing insulin secretion. Based on the achieved results we conclude that due to the
incomplete reprogramming, the IPCs have immature character and only partial properties of native human β-cells. and Corresponding author: Tomas Koblas
It is believed that omentin is secreted by stromal cells of adipose tissue and modulates insulin se nsitivity. Data from a few studies have shown lower serum omentin in obese children and higher in anorexia nervosa. However, to date, there is lack of research on serum omentin concentrations in adolescent patients in a wide range of body mass index (BMI) and insulin resistance. In this cross -sectional study omentin -1 serum concentrations were evaluated using commercially available ELISA kit in 47 Polish girls with restrictive anorexia nervosa (AN), 50 with simple obesity (OB) and 39 healthy controls (C). T he mean serum omentin -1 concentration in girls with AN was statistically significantly higher than that of C and OB girls. Statistically significant (P<0.0001) negative correlations between the serum concentrations of omentin- 1 and body weight (r= - 0.73), BMI (r= - 0.75), standard deviation score for body mass index (BMI -SDS) (r= - 0.75), insulin (r= - 0.81) and HOMA -IR index (r= - 0.82) were seen in the entire examined population. We conclude, that omentin -1 is the nutritional marker reflecting body weight and insulin resistance. Our findings support the hypothesized role of omentin in maintenance of body weight and regulation of appetite and suggest the adaptation of its secretion to body weight and glucose metabolism., J. Oświęcimska, A. Suwała, E. Świętochowska, Z. Ostrowska, P. Gorczyca, K. Ziora-Jakutowicz, E. Machura, M. Szczepańska, M. Kukla, M. Stojewska, D. Ziora, K. Ziora., and Obsahuje bibliografii
To estimate the significance of insulin in the regulation of preimplantation embryo growth, female mice received a single subdiabetogenic dose of streptozocin (65 mg/kg intraperitoneally) 8-11 days or 14-17 days before fertilization. Mean glycaemia levels and the number of embryos per mouse did not differ significantly between the streptozocin-treated and control groups. Morphological analysis of preimplantation embryos collected on day 3 of pregnancy revealed significant changes in the distribution pattern of preimplantation embryo stages recovered from streptozocin-treated females. Continuous insulin treatment of streptozocin-treated mice improved the impaired development of preimplantation embryos only in short-lasting experiments. After a long subdiabetic period (14-17 days) the incidence of degenerated embryos was increased in both streptozocin-treated groups. It can be concluded that the subdiabetic state in female mice impairs preimplantation embryo development which could partly be prevented by insulin treatment.