Accurate prediction of bus arrival time is of great significance to improve passenger satisfaction and bus attraction. This paper presents the prediction model of bus arrival time based on support vector machine with genetic algorithm (GA-SVM). The character of the time period, the length of road, the weather, the bus speed and the rate of road usage are adopted as input vectors in Support Vector Machine (SVM), and the genetic algorithm search algorithm is combined to find the best parameters. Finally, the data from Bus No.249 in Shenyang, china are used to check the model. The experimental results show that the forecasting model is superior to the traditional SVM model and the Artificial Neural Network (ANN) model in terms of the same data, and is of higher accuracy, which verified the feasibility of the model to predict the bus arrival time.
The individual plant of Chinese ivy can produce three types of branches (creepy, climbing, and reproductive) during its development, which adapt to different environmental factors. An eco-physiological model was constructed to simulate leaf net photosynthetic rate (PN) of Chinese ivy (Hedera nepalensis var. sinensis) in subtropical evergreen broad-leaved forest based on leaf physiological and mathematical analysis. The model integrated the rate-limiting biochemical process of photosynthesis and the processes of stomatal regulation. Influence of environmental factors (solar radiation, temperature, CO2 concentration, vapour pressure deficit, etc.) on PN was also considered in our model; its parameters were estimated for leaves on three types of branch in the whole growing season. The model was validated with field data. The model could simulate PN of leaf on three types of branches accurately. Influence of solar radiation on leaf PN of three types of branches in different seasons was analyzed through the model with numerical analysis. and J. Yang ... [et al.].
The effect of chronic cardiac lymphatic obstruction on the myocardial synthesis of collagen type I and III was investigated in a rabbit model. In the lymphatic obstruction group (n=16), plasma C-terminal propeptide type I procollagen (PICP) and N-terminal propeptide type III procollagen (PIIINP) were elevated at 7, 14 and 30 days after the operation (p<0.05). The elevated PICP and PIIINP returned to the pre-operation values 60 days after the operation. The myocardial expression of collagen type I and III mRNA were also enhanced in the lymphatic flow obstruction group. Plasma PICP, PIIINP and myocardial collagen type I and III mRNA remained unchanged in the control group (n=16). We concluded that chronic obstruction of cardiac lymph flow leads to enhanced myocardial collagen synthesis in rabbits. The enhanced collagen synthesis starts within seven days after lymphatic obstruction and subsides after 60 days.
The present study was conducted to determine the effect of exogenous application of brassinolide (BR) on Leymus chinensis grown under shade, i.e., control (100% natural light), mild shade (70% natural light), and moderate shade (50% natural light). Shade substantially enhanced the plant growth, synthesis of photosynthetic pigments, photosynthetic efficiency, and chlorophyll (Chl) fluorescence attributes of L. chinensis as compared with control. The order of increase was mild shade > moderate shade > natural light except Chl content, where the order of increase was moderate shade > mild shade > natural light. Likewise, application of BR resulted in further exacerbation of plant height, plant fresh and dry mass, but less in case of Chl and carotenoids contents, gas-exchange characteristics, and Chl fluorescence attributes. The results conclude that shade significantly enhanced plant growth through alterations in physiological attributes of L. chinensis, while, application of BR may not further improve the plant growth under shade., A. J. Yang, S. A. Anjum, L. Wang, J. X. Song, X. F. Zong, J. Lv, A. Zohaib, I. Ali, R. Yan, Y. Zhang, Y. F. Dong, S. G. Wang., and Obsahuje bibliografii
Net photosynthetic rate (PN) of ear and flag leaf during grain filling stage and grain yield of plants with non-darkened or darkened flag leaf or darkened ear were examined in two different CO2 concentrations: ambient (AC) and AC+200 µmol mol-1 (EC). Ear showed much higher enhancement (56 %) of PN than flag leaf (23 %) under EC. Moreover, CO2 enrichment shortened the photosynthetic duration of flag leaf relative to ear. In this way the ratio of ear to flag leaf contribution to grain yield increased from 1.18 (AC) to 1.39 (EC). and C.-W. Zhu ... [et al.].
A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patchclamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (–30 to –90 cm H2 O applied via the patch pipette) induced a current that could be inhibited by 10 µM of ruthenium red. This current was also inhibited by 20 µM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca2+ ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation., D. Zhang ... [et al.]., and Obsahuje seznam literatury
To test the hypothesis that neonatal GLP-1 exposure may program myosin heavy chain (MyHC) composition in adult skeletal muscle, two-day-old rats were transfected intramuscularly with vacant vector plasmid (VP), or recombinant plasmid expressing secretory GLP-1 at the doses of 60 μg (LG) and 120 μg (HG), respectively. Expression of GLP-1 mRNA was detected in muscles of both LG and HG rats 7 days after transfection, with more abundant GLP-1 transcript seen in LG rats. In accordance with the GLP-1 expression, LG rats demonstrated more significant responses to neonatal GLP-1 exposure. Small yet significant growth retardation was observed in LG rats, which is accompanied with significantly reduced serum insulin concentration at 8 weeks of age compared to VP rats. The responses of skeletal muscle were dependent on muscle type. Significant increase of PGC-1α and GLUT4 mRNA expression was detected in soleus of LG rats, whereas a MyHC type switch from ⅡB to Ⅰ was seen in gastrocnemius. These results indicate that neonatal exposure of healthy pups to ectopic GLP-1 causes growth retardation with decreased serum insulin as well as muscle type-dependent modifications in MyHC type composition and metabolic gene expression in adult rats., L. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy