Diabetic nephropathy (DN), the most serious complication of Type 1 diabetes (DM1), has a strong genetic component. Cyclooxygenase-2 (COX-2), an in ducible enzyme by a number of stimuli, has been implicated in pathophysiology of cardiovascular and renal disease, including DN. The allele -765C, of the -765G>C polymorphism (rs20417) in the COX-2 promoter has lower promoter activity compared with the -765G allele and protective effects in cardiovascular disease. This polymorphism was not investigated in patients with DM1 and nephropathy. The study was conducted in 779 Caucasian patients with DM1 and compared to a representative sample of healthy Czech population. The patients demonstr ated lower frequencies of the CC genotype (P=0.005). From th e DM1 cohort, 153 patients met the criteria for low risk of the development of DN (LRDN, duration of DM1>10 years, normoalbuminuria, normotension) and 139 patients had manifest DN. There were no differences in -765G>C polymorphisms between LRDN and DN patients. Moreover, the C/G allele frequenc ies did not also differ between the groups. In conclusion, patients with DM1 display lower freqencies of the protective CC genotype as compared to healthy subjects. However, the study did not reveal associations of -765G>C polymorphism with the risk of DN., J. A. Hubáček ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
1a_Caveolin-1 (CAV-1) is the main structural component of caveolae, acting as a modulator of signal transduction. CAV-1 might be involved in the pathophysiology of microvascular complications in Type 1 diabetes (DM). We sought to determine whether fractionation on sucrose gradient (SF), a method routinely utilized for isolation of caveolar fractions in homogenous cell lines, is applicable for CAV-1-related studies in tissues with multiple cell types, such as the normal rat kidney cortex (C). Using this method, we also determined whether streptozotocin- induced DM in rats (4-week duration) leads to changes in renal subcellular targeting of CAV-1, and evaluated the effects of tight metabolic control (insulin, 12 IU /day) and angiotensin receptor blocker, losartan (4 weeks, 20 mg/kg/day). Immunoblotting of individual fractions obtained from C revealed CAV-1 expression in fractions 4-6 that corresponded to light scattering band that typically forms after separating cellular fractions on SF. These fractions were considered to be caveolar fractions. In C, CAV-1 was also detectable in fracti ons 8-10. These and all other fractions except caveolar fractions were considered to be non-caveolar fractions. A ratio of caveolar/non-caveolar expression of CAV-1 (CNCR) was computed for each renal cortex allowing comparisons of CAV-1 subcellular distribution in C and DM rats, and effects of treatments., 2a_Using this approach, DM was characterized by marked increases in CNCR as compared to C (5.54±1.56 vs. 2.65±1.33, p<0. 05) that were reduced by treatment with insulin (0.78±0. 24, p<0.01 vs. DM) or losartan (0.84±0.06, p<0.01 vs. DM). In summary, analysis of CAV-1 following the SF of renal cortex detected similar distribution of the protein as in homogenous cell lines, DM-induced changes in CAV-1 targeting, and the effects of pharmacological treatments. This suggests applicability of SF in studies focusing on CAV-1 targeting in organs with various cell lines in vivo., H. Demová, R. Komers., and Obsahuje seznam literatury
Akt kinase regulates numerous cell functions including glucose metabolism, cell growth, survival, protein synthesis, and control of local hemodynamics. mTOR is one of down-stream effectors of Akt involved in the initiation of protein translation. However, renal Akt signaling in Type 1 diabetes (DM) in vivo, in particular under the conditions reflecting differences in metabolic control, has received less attention. Renal cortical activity and expression of Akt and mTOR (kinase assay, western blotting) were determined in streptozotocin-diabetic rats (D) with different levels of glycemic control (blood glucose 22.0± 1.0, 13.4±1.5, 8.1±0.4 mmol/l, p<0.05 between the groups), achieved by varying insulin treatment (0,4 and 12 IU/day), and in control rats with (C4) or without (C) chronic insulin administration. Renal Akt activity was reduced in D rats without insulin treatment and severe hyperglycemia (D-0, -62 %, p<0.01 vs. C), partially restored in moderately hypergly cemic rats (D-4, -30 %, p<0.05 vs. C), and normalized in D rats with intensive insulin and tight metabolic control (D-12). Expression of active mTOR paralleled Akt activity in D-0 (-51 %, p<0.01 vs. C), but not in D-4 and D- 12 that demonstrated increases in active mTOR (+55 %, +80 % resp., p<0.05) as compared to C. Moreover, insulin activated renal Akt (+82 %, p<0.01), but not mTOR in C4. In conclusion, glycemic control and intensity of insulin treatment are important modulators of renal Akt and mTOR activity in diabetes. While Akt activity is reversible by tight metabolic control, combination of hyperglycemia and insulin treatment resulted in enhancement of mTOR activity. In addition to Akt, other signaling pathways likely contribute to regulation of renal mTOR activity in diabetes., J. Ždychová, J. Veselá, L. Kazdová, R. Komers., and Obsahuje bibliografii a bibliografické odkazy