The aim of this study was to investigate the effects of troglitazone (TRO) - a new insulin-sensitizing agent - on some metabolic parameters in an experimental model of hypertriglyceridemia and insulin resistance, hereditary hypertriglyceridemic rats, and to compare its effects with those of vitamin E, an antioxidant agent. Three groups of the above rats were fed diets with a high content of sucrose (70 % of energy as sucrose) for four weeks. The first group was supplemented with TRO (120 mg/kg diet), the second one with vitamin E (500 mg/kg diet), and the third group served as the control. Vitamin E supplementation did not lower serum triglycerides (2.42±0.41 vs. 3.39±0.37 mmol/l, N.S.) while TRO did (1.87±0.24 vs. 3.39±0.37 mmol/l, p<0.01). Neither TRO nor vitamin E influenced the serum levels of free fatty acids (FFA). Both drugs influenced the spectrum of fatty acids in serum phospholipids - TRO increased the levels of polyunsaturated fatty acids (PUFA) n-6 (36.04±1.61 vs. 19.65±1.56 mol %, p<0.001), vitamin E increased the levels of PUFA n-3 (13.30±0.87 vs. 6.79±0.87 mol %, p<0.001) and decreased the levels of saturated fatty acids (32.97±0.58 vs. 51.45±4.01 mol %, p<0.01). In conclusion, TRO lowered the level of serum triglycerides but vitamin E did not have this effect in hypertriglyceridemic rats. Compared with TRO, vitamin E had a different effect on the spectrum of fatty acids in serum phospholipids., Š. Chvojková, L. Kazdová, J. Divišová., and Obsahuje bibliografii
There is increasing evidence that dietary saturated fatty acids (SAFA) have not only an indirect atherogenic effect due to increasing LDL-cholesterol concentration but also a direct effect by activating the inflammation process. This review summarizes several recent publications in this field. The effect of SAFA on the inflammation process mediated by Toll-like receptor 4/NF-κB pathway has been well documented in various in vitro culture studies of macrophages and adipocytes or in their co-culture. In contrast to these in vitro data, in vivo epidemiological studies or clinical experiments in men are less consistent. Well controlled cross-over studies in volunteers might enlighten the differences between saturated and unsaturated fatty acids dietary intake and proatherogenic inflammation effects., R. Poledne., and Obsahuje seznam literatury
The impact of heat shock on minimising the activity of photosystem 2 (PS2) initiating high lipid peroxidation (POL) level and consequently changes in the enzymatic-antioxidant protective system was studied in seedlings of two Egyptian cultivars of barley (Giza 124 and 125). Heat doses (35 and 45 °C for 2, 4, 6, and 8 h) decreased chlorophyll (Chl) contents coupled with an increase in Chl a/b ratio, diminished Hill reaction activity, and quenched Chl a fluorescence emission spectra. These parameters reflect the disturbance of the structure, composition, and function of the photosynthetic apparatus as well as the activity of PS2. POL level, as dependent on the balance between pro- and anti-oxidant systems, was directly correlated with temperature, exposure time, and their interaction. Heat shock caused an increase in the electric conductivity of cell membrane, and malonyldialdehyde content (a peroxidation product) coupled with the disappearance of the polyunsaturated linolenic acid (C18:3), reflecting the peroxidation of membrane lipids which led to the loss of membrane selective permeability. Moreover, it induced distinct and significant changes in activities of antioxidant enzymes. Superoxide dismutase and peroxidase activities have been progressively enhanced by moderate and elevated heat doses, but the most elevated one (45 °C for 8 h) showed a decrease in activities of both enzymes. In contrast, catalase activity was reduced with all heat shocks. and F. El-Shintinawy ... [et al.].
Obesity in childhood increases the risk of obesity in adulthood and is predictive for the development of metabolic disorders. The fatty acid composition is associated with obesity and obesityassociated disorders. We investigated the relationship between serum fatty acids composition, adiposity, lipids profile, parameters of glucose metabolism and leptin. The study subjects were 380 adolescents aged 15.0-17.9 years. The study's variables included anthropometric measurements, levels of serum lipids and hormonal parameters. Individual fatty acids were determined in plasma by gas-liquid chromatography. Palmitoleic acid (16:1n-7, PA) significantly positively correlated with percentage of body fat. Saturated fatty acids in phospholipids (PL) positively correlated with BMI and percentage of body fat. PA content in all lipids classes positively correlated with total cholesterol (TC), HDL cholesterol, triglycerides (TG) levels. Stearoyl-CoA desaturase (SCD) activity positively correlated with percentage of body fat and positive correlations of SCD and PA level with leptin were found. Plasma PA content and SCD are associated with adiposity and leptin in obese adolescents. No significant correlation between PA level and insulin resistance was found. Palmitoleate positively correlated with TC, HDL cholesterol, TG and LDL cholesterol levels., P. Hlavaty, E. Tvrzicka, B. Stankova, H. Zamrazilova, B. Sedlackova, L. Dusatkova, V. Hainer, M. Kunesova., and Obsahuje bibliografii
In the current study, we tested a hypothesis that CD36 fatty acid (FA) transporter might affect insulin sensitivity by indirect effects on FA composition of adipose tissue. We examined the effects of CD36 downregulation by RNA interference in 3T3-L1 adipocytes on FA transport and composition and on sensitivity to insulin action. Transfected 3T3-L1 adipocytes, without detectable CD36 protein, showed reduced neutral lipid levels and significant differences in FA composition when levels of essential FA and their metabolites were lower or could not be detected including gamma linolenic (C18:3 n6), eicosadienic (C20:2 n6), dihomo-gamma linolenic (C20:3 n6), eicosapentaenoic (EPA) (C20:5 n3), docosapentaenoic (DPA) (C22:5 n3), and docosahexaenoic (DHA) (C22:6 n3) FA. Transfected 3T3-L1 adipocytes exhibited a significantly higher n6/n3 FA ratio, reduced Δ5-desaturase and higher Δ9-desaturase activities. These lipid profiles were associated with a significantly reduced insulin-stimulated glucose uptake (4.02±0.1 vs. 8.42±0.26 pmol.10-3 cells, P=0.001). These findings provide evidence that CD36 regulates FA composition thereby affecting sensitivity to insulin action in 3T3-L1 adipocytes., K. Kontrová, J. Zídková, B. Bartoš, V. Skop, J. Sajdok, L. Kazdová, K. Mikulík, P. Mlejnek, V. Zídek, M. Pravenec., and Obsahuje bibliografii a bibliografické odkazy
Short-term weight-reducing regimens were shown to influence fatty acid composition of serum lipids unfavorably. Adding long chain n-3 polyunsaturated fatty acids (n-3 LC PUFA) to a low-calorie diet (LCD) could avoid these changes. The aim of this study was to examine the effect of a short-term in-patient weight-reducing regimen including LCD with yogurt enriched by low doses of n-3 PUFA (n-3 LCD). The enriched yogurt contained 790 mg of fish oil, predominantly eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA). Forty obese women were randomly assigned to the group consuming LCD and joghurt either with or without n-3 enrichment. Following the 3-week diet in the n-3 LCD group a significantly higher increase in the proportion of n-3 LC PUFA (sum of n-3 FA, EPA and DHA) in serum lipids was confirmed. In phospholipids (PL) a significant difference in the sum of n-6 fatty acids was found, a decrease in the n-3 LCD group and an increase in LCD group. Significantly higher increase in the PL palmitate (16:0) was shown in the LCD group. The results suggest that low doses of n-3 fatty acid enrichment can help to avoid unfavorable changes in fatty acid composition in serum lipids after a short-term weight-reducing regimen., P. Hlavatý, M. Kunešová, M. Gojová, E. Tvrzická, M. Vecka, P. Roubal, M. Hill, K. Hlavatá, P. Kalousková, V. Hainer, A. Žák, J. Drbohlav., and Obsahuje bibliografii a bibliografické odkazy
Postnatal heart development is characterized by critical periods of heart remodeling. In order to characterize the changes in the lipophilic fraction induced by free radicals, fatty acids and t heir oxidized products, lipofuscin -like pigments (LFP), were investigated. Fatty acids were analyz ed by gas chromatography and LFP were studied by fluorescence techniques. A fluorophore characterized by spectral methods was further resolved by HPLC. Major changes in the composition of fatty acids occurred immediately after birth and then during maturation. Fluorescence of LFP changed markedly on postnatal days 1, 4, 8, and 14, and differed from the adult animals. LFP comprise several fluorophores that were present since fetal state till adulthood. No new major fluorophores were formed during development, just the abundances of individual fluorophores have been modulated which produced changes in the shape of the spectral arrays. HPLC resolved the fluorophore with excitation maximum at 360 nm and emission maximum at 410 nm. New chromatographically distinct species appeared immediately on postnatal day 1, and then on days 30 and 60. Consumption of polyunsaturated fatty acids immediately after birth and subseque nt formation of LFP suggests that oxidative stress is involved in normal heart development., J. Wilhelm, J. Ivica, Z. Veselská, J. Uhlík, L. Vajner., and Obsahuje bibliografii
The content of phospholipids and their fatty acid composition were followed in the hearts of two inbred strains of rats: IR, resistant against the development of isoprenaline-induced myocardial lesions and IS, sensitive to their development. In the hearts of rats of the resistant strain, a lower content of phosphatidylcholine and its plasmalogen fraction was found compared to IS rats. The total amount of phospholipids was only insignificantly lower in IR rats. Greater differences were found in individual fatty acids. The most important finding concerned lower arachidonic acid and higher linoleic acid content in heart phospholipids of IR rats. These differences were exactly opposite to changes reported in the literature in animals known to have a higher resistance against myocardial damage due to various interventions. Our results do not support the hypothesis claiming the importance of changes in phospholipids and their FA composition for the resistance of the heart against the development of necrotic lesions.
The effects of 8-days treatment with 17α-estradiol (33.3 μg/kg) and progesterone (1.7 mg/kg) on plasma lipids and fatty acid composition of plasma phospholipids were examined in intact (INT) and bilaterally common carotid arteries occluded (BCO) male Wistar rats. Significant decrease of triglyceride level was found in BCO rats after the estradiol treatment. Both hormones elevated proportion of 18:1n-7 fatty acid in INT, but they failed to have such an effect in BCO. Estradiol increased 22:5n-3 and total n-3 polyunsaturated fatty acids (PUFA) in intact, and decreased 18:2n-6 in BCO rats. Significantly lower level of total n-3 was found in progesterone-treated than in estradiol-treated BCO rats. Given that n-3 PUFA have many beneficial effects on cell and tissue function, while n-6 PUFA have mostly the opposite effects, estradiol, rather than progesterone, was seen to improve plasma lipids and phospholipids FA profiles in INT and BCO animals. Estradiol significantly elevated the estimated activity of Δ9-desaturases and progesterone of Δ5-desaturase in BCO group, with no effects in INT rats., S. Petrović, M. Takić, A. Arsić, V. Vučić, D. Drakulić, M. Milošević, M. Glibetić., and Obsahuje bibliografii
EGY1 (ethylene-dependent gravitropism-deficient and yellow-green 1) is an intramembrane metalloprotease located in chloroplasts, involved in many diverse processes including chloroplast development, chlorophyll biosynthesis, and the ethylene-dependent gravitropic response. Plants deprived of this protease display pleiotropic effects such as the yellow-green early senescence phenotype and a poorly developed thylakoid system membrane in the mature chloroplasts. We applied the GC/MS technique to analyze the changes in fatty acid composition in two egy1 mutant lines. We used DAPI staining and transmission electron microscopy methods to establish the number of nucleoids and the amount of chloroplast DNA. Our results indicated that the lack of EGY1 protease led to a dramatic overaccumulation and a dramatic decrease in the content of linolenic acid C18:3 and hexadecatrienoic acid C16:3, respectively. The amount of chloroplast DNA and the number of nucleoids were severely reduced in egy1 mutant lines. Similarly, a reduced correlation between DAPI and autofluorescence signal was observed, which may indicate some perturbations in nucleoid anchoring.