Short-term weight-reducing regimens were shown to influence fatty acid composition of serum lipids unfavorably. Adding long chain n-3 polyunsaturated fatty acids (n-3 LC PUFA) to a low-calorie diet (LCD) could avoid these changes. The aim of this study was to examine the effect of a short-term in-patient weight-reducing regimen including LCD with yogurt enriched by low doses of n-3 PUFA (n-3 LCD). The enriched yogurt contained 790 mg of fish oil, predominantly eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA). Forty obese women were randomly assigned to the group consuming LCD and joghurt either with or without n-3 enrichment. Following the 3-week diet in the n-3 LCD group a significantly higher increase in the proportion of n-3 LC PUFA (sum of n-3 FA, EPA and DHA) in serum lipids was confirmed. In phospholipids (PL) a significant difference in the sum of n-6 fatty acids was found, a decrease in the n-3 LCD group and an increase in LCD group. Significantly higher increase in the PL palmitate (16:0) was shown in the LCD group. The results suggest that low doses of n-3 fatty acid enrichment can help to avoid unfavorable changes in fatty acid composition in serum lipids after a short-term weight-reducing regimen., P. Hlavatý, M. Kunešová, M. Gojová, E. Tvrzická, M. Vecka, P. Roubal, M. Hill, K. Hlavatá, P. Kalousková, V. Hainer, A. Žák, J. Drbohlav., and Obsahuje bibliografii a bibliografické odkazy
Dietary composition and metabolism of fatty acids (FA) influence insulin resistance, atherogenic dyslipidemia and other components of the metabolic syndrome (MS). It is known that patients with MS exhibit a heterogeneous phenotype; however, the relationships of individual FA to MS components have not yet been consistently studied. We examined the plasma phosphatidylcholine FA composition of 166 individuals (68F/98M) with MS and of 188 (87F/101M) controls. Cluster analysis of FA divided the groups into two clusters. In cluster 1, there were 65.7 % of MS patients and 37.8 % of controls, cluster 2 contained 34.3 % of patients and 62.2 % of controls (P<0.001). Those with MS within cluster 1 (MS1) differed from individuals with MS in cluster 2 (MS2) by concentrations of glucose (P<0.05), NEFA (P<0.001), HOMA-IR (P<0.05), and levels of conjugated dienes in LDL (P<0.05). The FA composition in MS1 group differed from MS2 by higher contents of palmitoleic (+30 %), γ-linolenic (+22 %), dihomo-γ-linolenic (+9 %) acids and by a lower content of linoleic acid (–25 %) (all P<0.01). These FA patterns are supposed to be connected with the progression and/or impaired biochemical measures of MS (lipolysis, oxidative stress, dysglycidemia, and insulin resistance)., A. Žák, M. burda, M. Vecka, M. Zeman, E. Tvrzická, B. Staňková., and Obsahuje bibliografii
Increasing hemodynamic load during early postnatal development leads to rapid growth of the left ventricular (LV) myocardium, which is associated with membrane phospholipid (PL) remodeling characterized by n-3 polyunsaturated fatty acids (PUFA) accumulation. The aim of this study was to examine the influence of additional workload imposed early after birth when ventricular myocytes are still able to proliferate. Male Wistar rats were subjected to abdominal aortic constriction (AC) at postnatal day 2. Concentrations of PL and their fatty acid (FA) profiles in the LV were analyzed in AC, sham-operated (SO) and intact animals on postnatal days 2 (intact only), 5 and 10. AC resulted in LV enlargement by 22 % and 67 % at days 5 and 10, respectively, compared with age-matched SO littermates. Concentrations of phosphatidylcholine, cardiolipin, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine and sphingomyelin decreased in AC myocardium, albeit with different time course and extent. The main effect of AC on FA remodeling consisted in the accumulation of n-3 PUFA in PL. The most striking effect of AC on FA composition was observed in phosphatidylinositol and cardiolipin. We conclude that excess workload imposed by AC inhibited the normal postnatal increase of PL concentration while further potentiating the accumulation of n-3 PUFA as an adaptive response of the developing myocardium to accelerated growth., F. Novák, ... [et al.]., and Obsahuje seznam literatury