The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant., A. A. Asrar, G. M. Abdel-Fattah, K. M. Elhindi., and Obsahuje bibliografii
5-aminolevulinic acid (ALA) is an essential precursor for the biosynthesis of tetrapyrrols such as heme and chlorophyll (Chl). Previous studies have focused mainly on promotive effects of exogenous ALA on plant growth, while regulatory mechanisms affecting Chl biosynthesis have been only partially discussed. In the present study, the ameliorative role of exogenous ALA was investigated on Chl and endogenous ALA biosynthesis in six-day-old etiolated oilseed rape (Brassica napus L.) cotyledons during the de-etiolation stage. We showed that exogenously applied ALA of a low dosage enhanced Chl and ALA accumulation in cotyledons, while 600 µM ALA treatment inhibited the accumulation of Chl and ALA severely. However, the gene expression levels of glutamyl-tRNA reductase (HEMA) and glutamate-1-semialdehyde aminotransferase (GSA) were not affected under either low or high ALA concentrations. Furthermore, water deficit induced by polyethylene glycol 6000 (PEG) suppressed the Chl and ALA accumulation in cotyledons, while the inhibition was partially alleviated in the cotyledons pretreated with ALA. The decrease in Chl biosynthesis induced by PEG stress was assumed to be related to downregulation of HEMA and Mg-chelatase ChlH (ChlH), and upregulation of ferrochelatase (FC) genes. Moreover, exogenously applied ALA did not show any effect on the expression of Chl synthesis-related genes under the PEG treatment. These results showed a difference in suppressing ALA synthesis due to the high concentration of ALA and PEG. Exogenously applied ALA did not affect the expression of HEMA and GSA, thus exogenous ALA regulated Chl synthesis not via the regulation of transcriptional level in ALA biosynthesis. However, the inhibition in Chl and endogenous ALA accumulation by the PEG treatment may be attributed to downregulation of HEMA and ChlH, and upregulation of FC., D. Liu, D. D. Kong, X. K. Fu, B. Ali, L. Xu, W. J. Zhou., and Seznam literatury
Effects of benzyladenine (BA) and abscisic acid (ABA) applied separately or simultaneously on parameters of gas exchange of Phaseolus vulgaris L. leaves were studied. In the first two experimental sets) 100 μM ABA and 10 μM BA were applied to plants sufficiently supplied with water. Spraying of leaves with ABA decreased stomatal conductance (gs) and in consequence transpiration rate (E) and net photosynthetic rate (PN) already 1 h after application, but 24 h after application the effect almost disappeared. 10 μM BA slightly decreased gas exchange parameters, but in simultaneous application with ABA reversed the effect of ABA. Immersion of roots into the same solutions markedly decreased gas exchange parameters and 24 h after ABA application the stomata were completely closed. The effect of ABA was ameliorated by simultaneous BA application, particularly after 1-h treatment. In the third experimental set, plants were pre-treated by immersing roots into water, 1 μM BA, or 100 μM ABA for 24 h and then the halves of split root system were dipped into different combinations of 1 μM BA, 100 μM ABA, and water. In plants pre-treated with ABA all gas exchange parameters were small and they did not differ in plants treated with H2O+H2O, H2O+BA, or BA+BA. In plants pre-treated with BA or H2O, markedly lower values of PN were found when both halves of roots were immersed in ABA. Further, the effects of pre-treatment of plants with water, 1 μM BA, 100 μM ABA, or ABA+BA on the development of water stress induced by cessation of watering and on the recovery after rehydration were followed. ABA markedly decreased gas exchange parameters at the beginning of the experiment, but in its later phase the effect was compensated by delay in development of water stress. BA also delayed development of water stress and increased PN in water-stressed leaves. BA reversed the effect of ABA at mild water stress. Positive effects of BA and ABA pre-treatments were observed also after rehydration.
Response of net photosynthetic rate (PN), stomatal conductance
(gs), intercellular CO2 concentration (ci), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) µmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of PN without any change in gs. Under both C800 and C380, water stress decreased PN and gs significantly without any substantial reduction of ci, suggesting that both stomatal and non-stomatal factors regulated PN. However, the photosynthetic efficiency of PS2 was not altered.
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (PN) and stomatal conductance (gs) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum PN and gs, although PN was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (Ψ1) during the drought period (-3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as Ψ1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of Ψ1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus. and A. Bombelli, L. Gratani.
The effects of water stress on leaf surface morphology (stomatal density, size, and trichome density of both adaxial and abaxial surfaces) and leaf ultrastructure (chloroplasts, mitochondria, and cell nuclei) of eggplant (Solanum melongena L.) were investigated in this study. Higher stomata and trichome densities were observed on abaxial surface compared with the adaxial surface. Compared with well watered (WW) plants, the stomata and trichome density of the abaxial surface increased by 20.39% and 26.23% under water-stress condition, respectively. The number of chloroplasts per cell profile was lesser, the chloroplasts became round in a shape with more damaged structure of membranes, the number of osmiophilic granules increased, and the number of starch grains decreased. The cristae in mitochondria were disintegrated. The cell nuclei were smaller and the agglomerated nucleoli were bigger than those of WW plants. Our results indicated that the morphological and anatomical responses enhanced the capability of plants to survive and grow during stress periods., Q. S. Fu ... [et al.]., and Obsahuje bibliografii
Periodic drought fluctuation is a common phenomenon in Northwest China. We analyzed the response of Chinese dwarf cherry (Cerasus humilis) seedlings, a dwarf shrub species with considerably strong adaptabilities, exposed to water stress (WS) by withholding water for 21 d, and subsequent recovery of 7 d. Leaf relative water content (LRWC), net photosynthetic rate (PN), maximal quantum yield of PSII photochemistry (Fv/Fm), and effective quantum yield of PSII photochemistry (ΦPSII) decreased with increasing water deficit. In contrast, the nonphotochemical quenching of Chl fluorescence (NPQ) significantly increased, as well as the amounts of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z). In the whole levels, the photosynthetic pigment composition did not display significant changes in WS seedlings. However, the de-epoxidation state of xanthophyll cycle pigments [(Z+0.5A)/VAZ ] generally exhibited higher values in WS seedlings. The significant inhibition of de-epoxidation by dithiothreitol (DTT) and negligible changes of epoxidation of Z by glucosamine (Gla) were both observed; the slight but stably upregulated transcript level of violaxanthin de-epoxidase (VDE) and downregulated zeaxanthin epoxidase (ZEP) expression profile were found during WS period, indicating that they were regulated on post-transcript levels. VDE activity, via the accumulation of Z and A, which confers a greater capacity of photoprotection, appears to contribute to the survival of severely stressed plants. and X. S. Song ... [et al.].
Water deficit (WD) at the start of the flowering stage can negatively affect the productivity of plants. The aim was to investigate the morphophysiological strategies of two crambe lineages (FMS CR 1326 and 1307) submitted to WD during the flowering stage and their connection with the progeny's germination. Plants were submitted to WD at the start of flowering for 12 d and then were irrigated again (water resumption, WR). As a control, plants were cultivated with uninterrupted daily irrigation. Under WD, reductions were observed in the stomatal conductance, the number of xylem vessels, and the mass of grains. Positive K- and L-bands occurred, indicating lower stability and efficiency in the use of energy under WD. In the WR period, plants presented photochemical recovery. WD induced less vigorous seeds. FMS CR 1307 had the highest capacity to maintain its photochemical performance, due to alterations in water conductivity, resulting in greater seed production and vigor.
Inactivation of photosynthesis during atmospheric and osmotic (highly concentrated NaCl or sucrose solutions) dehydration was monitored by measurement of chlorophyll fluorescence induction (OIP-phase, Kautsky-curves) in three lichen species. The induction curves were changed in a very similar way by all three treatments. All dehydration effects were rapidly reversible after rehydration. At relatively mild water stress, the rise time to the transient peak Fp was prolonged, and the variable part of fluorescence was diminished. In addition, at severe water stress, a considerable decline of the F0 value was observed. For NaCl treatment this effect started at water potentials <-8.5 MPa in P. aphthosa, <-12 MPa in H. physodes, and <-21 MPa in L. pulmonaria. Above these water potentials, our observations are in agreement with values from desiccation-tolerant algae, higher plants, and lichens, where an inactivation on the photosystem 2 (PS2) donor side has been postulated. At very low water potentials, the decrease in F0 probably monitors changes in the organization of the antenna apparatus of PS2. and M. Jensen, Samira Chakir, G. B. Feige.
The photosynthetic response of three Arachis hypogaea L. cultivars (57-422, 73-30, and GC 8-35) grown for two months was measured under water available conditions, severe water stress, and 24, 72, and 93 h following re-watering. At the end of the drying cycle, all the cultivars reached dehydration, relative water content (RWC) ranging between 40 and 50 %. During dehydration, leaf stomatal conductance (gs), transpiration rate (E), and net photosynthetic rate (PN) decreased more in cvs. 57-422 and GC 8-35 than in 73-30. Instantaneous water use efficiency (WUEi) and photosynthetic capacity (Pmax) decreased mostly in cv. GC 8-35. Except in cv. GC 8-35, the activity of photosystem 1 (PS1) was only slightly affected. PS2 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were the main targets of water stress. After re-watering, cvs. 73-30 and GC 8-35 rapidly regained gs, E, and PN activities. Twenty-four hours after re-watering, the electron transport rates and RuBPCO activity strongly increased. PN and Pmax fully recovered later. Considering the different photosynthetic responses of the studied genotype, a general characterisation of the interaction between water stress and this metabolism is presented. and J. A. Lauriano ... [et al.].