Arbuscular mycorrhizal symbiosis is the most frequent and ancestral type of mycorrhizal symbiosis. It is estimated that at least 80% of terrestrial plant species are able to form a mutualistic relation with fungi. Consequently in the context of successful plant invasions, arbuscular mycorrhizal fungi may have a favourable if not a crucial role. The mycorrhizal status of 23 invasive species is reported here for the first time. This study also tested whether the intensity of mycorrhizal colonization of the roots of invasive species is related to that of the dominant species of invaded plant community. This is partly supported by our results when total percentages of mycorrhizal colonization were compared. In addition, the effect of habitat and community characteristics on the intensity of colonization of the roots of invasive species by arbuscular mycorrhizal fungi was tested and several significant correlations were revealed. At the among-species level, the total mycorrhizal colonization decreases and the relative arbuscular colonization increases in the roots of invasive species with increasing nitrogen availability in the habitat. Both these relations are significant after phylogenetic correction, which suggests this is an evolutionary adaptation. There are also negative correlations between the relative arbuscular colonization of invading species and the light and temperature demands of the species present in the community, and a positive correlation between the relative arbuscular colonization of the invaders and soil wetness. That all these relations are revealed at the within-species level possibly reflects differences among the habitats studied.
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant., A. A. Asrar, G. M. Abdel-Fattah, K. M. Elhindi., and Obsahuje bibliografii