The effects of water stress on leaf surface morphology (stomatal density, size, and trichome density of both adaxial and abaxial surfaces) and leaf ultrastructure (chloroplasts, mitochondria, and cell nuclei) of eggplant (Solanum melongena L.) were investigated in this study. Higher stomata and trichome densities were observed on abaxial surface compared with the adaxial surface. Compared with well watered (WW) plants, the stomata and trichome density of the abaxial surface increased by 20.39% and 26.23% under water-stress condition, respectively. The number of chloroplasts per cell profile was lesser, the chloroplasts became round in a shape with more damaged structure of membranes, the number of osmiophilic granules increased, and the number of starch grains decreased. The cristae in mitochondria were disintegrated. The cell nuclei were smaller and the agglomerated nucleoli were bigger than those of WW plants. Our results indicated that the morphological and anatomical responses enhanced the capability of plants to survive and grow during stress periods., Q. S. Fu ... [et al.]., and Obsahuje bibliografii
The mechanisms of capsicum growth in response to differential light availabilities are still not well elucidated. Hereby, we analyzed differential light availabilities on the relationship between stomatal characters and leaf growth, as well as photosynthetic performance. We used either 450-500 µmol m-2 s-1 as high light (HL) or 80-100 µmol m-2 s-1 as low light (LL) as treatments for two different cultivars. Our results showed that the stomatal density (SD) and stomatal index (SI) increased along with the leaf area expansion until the peak of the correlation curve, and then decreased. SD and SI were lower under the LL condition after three days of leaf expansion. For both cultivars, downregulation of photosynthesis and electron transport components was observed in LL-grown plants as indicated by lower light- and CO2-saturated photosynthetic rate (Pmax and RuBPmax), quantum efficiency of photosystem II (PSII) photochemistry (ΦPSII), electron transport rate (ETR) and photochemical quenching of fluorescence (qp). The observed inhibition of the photosynthesis could be explained by the decrease of SD, SI, Rubisco content and by the changes of the chloroplast. The low light resulted in lower total biomass, root/shoot ratio, and the thickness of the leaf decreased. However, the specific leaf area (SLA) and the content of leaf pigments were higher in
LL-treatment. Variations in the photosynthetic characteristics of capsicum grown under different light conditions reflected the physiological adaptations to the changing light environments. and Q. S. Fu ... [et al.].