Tartary buckwheat (Fagopyrum tataricum Gaertn) has been praised as one of green foods for humans in the 21st century. Effects of fertilization on leaf photosynthetic characteristics and grain yield of tartary buckwheat has not been yet reported in detail. Our experiment was set as a split-plot factorial. The main plots and subplots were designed by fertilizer ratio and rate as: NPK 1:1:1 (A1), NPK 1:4:2 (A2), NPK 1:2:3 (A3), and 300 (B1), 450 (B2), and 600 (B3) kg (NPK) ha-1. Our results showed that the grain yield was significantly and positively correlated with the net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), PAR, stomatal limitation value (Ls), chlorophyll content (SPAD value), and leaf area index (LAI), while significantly and negatively correlated with intercellular CO2 concentration (Ci) and water-use efficiency (WUE). The grain yield, PN, gs, E, PAR, Ls, SPAD, and LAI increased and then decreased with enhanced fertilization, and their maximum values appeared in the A2B2 treatment. The Ci and WUE decreased and then increased with enhanced fertilization, and their minimum values appeared in the A2B2 treatment. Our results suggested that fertilization had significant effects on the leaf photosynthetic capacity and grain yield of tartary buckwheat
Yunqiao1, and the best fertilization strategy was 450 kg ha-1 with NPK 1:4:2., C. Wang, H. Z. She, X. B. Liu, D. Hu, R. W. Ruan, M. B. Shao, L. Y. Zhang, L. B. Zhou, G. B. Zhang, D. Q. Wu, Z. L. Yi., and Obsahuje bibliografii
Wheat plants grown in controlled growth chambers were exposed to drought stress (DS) and high temperature (HT) singly and in combination (DS+HT). The effects of these two stresses on net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), quantum efficiency of photosystem 2 (ΦPS2), variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm), photochemical (qp) and non-photochemical (NPQ) Chl fluorescence, and yield were investigated. Grain yield was decreased by 21 % due to DS, while it was increased by 26 % due to HT. PN, g s, Ci, and Chl fluorescence were dramatically reduced to DS, HT, and their interaction, except NPQ which showed an increase due to HT.
Expression quantitative trait loci (eQTL) analyses were applied in order to identify genetic factors that are relevant to the expression of a β-isoform Rubisco activase gene in maize, namely ZmRCAβ, in this study. During two years, a maize recombinant inbred line population was measured for ZmRCAβ expression levels at the grain filling stage. Based on a genetic map containing 916 molecular markers, we detected five eQTLs, namely qRCA2.1 on chromosome 2, and qRCA4.1, qRCA4.2, qRCA4.3, and qRCA4.4 on chromosome 4. These eQTLs explained the phenotypic variation ranging from 6.14% to 7.50% with the logarithm of the odd values ranging from 3.11 to 4.96. Based on the position of the eQTLs and ZmRCAβ on the chromosome, qRCA4.2 was inferred as a cis-eQTL and the remaining as a trans-eQTL, suggesting that a combination of both cis- and trans-acting elements might control ZmRCAβ expression. qRCA4.2, qRCA4.3, and qRCA4.4 were repeatedly detected during two years., Q. Sun, Y. Zhang, B. Chen, B. Jia, Z. L. Zhang, M. Cui, X. Kan, H. B. Shi, D. X. Deng, Z. T. Yin., and Obsahuje bibliografii
Water deficit (WD) at the start of the flowering stage can negatively affect the productivity of plants. The aim was to investigate the morphophysiological strategies of two crambe lineages (FMS CR 1326 and 1307) submitted to WD during the flowering stage and their connection with the progeny's germination. Plants were submitted to WD at the start of flowering for 12 d and then were irrigated again (water resumption, WR). As a control, plants were cultivated with uninterrupted daily irrigation. Under WD, reductions were observed in the stomatal conductance, the number of xylem vessels, and the mass of grains. Positive K- and L-bands occurred, indicating lower stability and efficiency in the use of energy under WD. In the WR period, plants presented photochemical recovery. WD induced less vigorous seeds. FMS CR 1307 had the highest capacity to maintain its photochemical performance, due to alterations in water conductivity, resulting in greater seed production and vigor.
Chlorophyll (Chl) content, photochemical activity of chloroplasts as well as photosynthetic and crop productivity were studied in different winter hexaploid Triticale (xTriticosecale Witt.) lines and their F1 hybrids. Heterosis enhanced Chl content, photosynthetic potential, photosynthetic productivity, and grain yield only in several F1 hybrids of Triticale. Indication in some genotypes of close correlations among morphological structure, Chl content, photochemical activity of chloroplasts, photosynthetic potential, and plant productivity may be used in breeding practice of Triticale. and S. N. Kabanova ... [et al.].
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007-2008 and 2008-2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (PN) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of PN to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2-11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent. and G. C. Shao ... [et al.].
To investigate how bisulfite promotes photosynthesis, a pot experiment was conducted with rice (Oryza sativa L.) plants to determine Rubisco activity and content, and Rubisco activase (RCA) gene expression after spraying NaHSO3 on rice leaves. The NaHSO3 treatment promoted significantly net photosynthetic rate (PN), carboxylation efficiency, maximum carboxylation rate, ribulose-1,5-bisphosphate regeneration rate, initial Rubisco activity, and RCA protein and mRNA concentrations. Therefore, the NaHSO3 enhancement of PN could be directly attributed to induction of RCA gene expression both at the transcription and translation levels. Thus, the increased RCA regulated the initial Rubisco activity in vivo., Y. Chen, J.-H. Jin, Q.-S. Jiang, C.-L. Yu, J. Chen, L.-G Xu, D.-A. Jiang., and Obsahuje bibliografii
We established a multifactoral long-term field experiment at the Látókép experimental site of the University of Debrecen (Debrecen, Hungary), on mid-heavy calcareous chernozem soil in 1984, using experimental data from 17 years (1990-2008). We examined the extent to which soil fertility affects maize yield under natural conditions (without fertilisation). We analysed the effect of precipitation in the winter period (from the harvest of the previous crop (maize) until sowing (i.e. October-March)) and the growing season (i.e. April-September) on yield and we evaluated yield per FAO group. We examined the joint effect of crop year and hybrid maturity groups on maize yield; then we evaluated how hybrid maturity groups per crop year and wet and dry years per ripening group affected maize yield. It was shown that the pH value of soil significantly affected yield and also that there was a strong positive correlation between pH value and yield (r = 0.81) at a 1% significance level. The correlation between the two variables is described by a linear regression line. The slope shows that a 0.1 soil pH increase results in a 510 kg ha-1 maize yield increase on average. The correlation between the amount of precipitation during the growing season and maize yield is average, positive (r = 0.718) and linear. Based on the parameters of the estimated regression line - within non-fertilised conditions - 1 mm increase of precipitation resulted in a 9 kg ha-1 increase in yield. The analysis of the joint effect of hybrid maturity groups and crop year on yield showed that crop year determines standard deviation six times more than hybrid maturity groups, whereas the effect their interaction was not significant. and Práca bsahuje výsledky multifaktorového, dlhodobého pokusu na experimentálnej ploche Látókép, Univerzity v Debrecíne (Debrecen, Maďarsko). Experiment prebiehal od roku 1984, v tejto práci boli použité údaje z experimentu získané počas 17tich rokov (1990-2008). Pôda je stredne ťažká černozem. Bol skúmaný vplyv pôdnej úrodnosti na úrodu kukurice v prirodzených podmienkach, bez hnojenia. Študoval sa predovšetkým vplyv zrážok počas zimného obdobia (od zberu úrody kukurice až po nasledujúcu sejbu, t.j. od októbra do marca) a vplyv zrážok počas vegetačného obdobia (apríl -september) na úrodu kukurice. Okrem toho sa študoval vplyv ''sezóny'' a skupín skorosti hybridov na úrodu kukurice. Bolo vyhodnotený tiež vplyv skupiny skorosti hybridov počas suchých a mokrých rokov na úrodu kukurice. Bolo preukázané, že hodnota pH pôdy významne ovplyvňuje úrodu; súčiniteľ lineárnej korelácie medzi pH a úrodou na úrovni významnosti 1% bol r = 0,81. Z tejto korelácie vyplýva, že zvýšenie pH o 0,1 spôsobuje zvýšenie úrody kukurice priemerne o 510 kg ha-1. Korelácia medzi úrnom zrážok počas vegetačného obdobia kukurice a úrodou je pozitívna a lineárna (r = 0,718), z analýzy vyplýva, že zvýšenie úhrnu zrážok o 1 mm spôsobí priemerné zvýšenie úrody kukurice o 9 kg ha-1. Z výsledkov analýzy spoločného vplyvu skupín skorosti hybridov a sezóny vyplýva, že konkrétna sezóna ovplyvňuje tvorbu úrod 6-krát významnejšie, ako skupina skorosti hybridov; interakcia medzi skupinami skorosti hybridov a vlastnosťami sezóny nie je významná.