Water deficit (WD) at the start of the flowering stage can negatively affect the productivity of plants. The aim was to investigate the morphophysiological strategies of two crambe lineages (FMS CR 1326 and 1307) submitted to WD during the flowering stage and their connection with the progeny's germination. Plants were submitted to WD at the start of flowering for 12 d and then were irrigated again (water resumption, WR). As a control, plants were cultivated with uninterrupted daily irrigation. Under WD, reductions were observed in the stomatal conductance, the number of xylem vessels, and the mass of grains. Positive K- and L-bands occurred, indicating lower stability and efficiency in the use of energy under WD. In the WR period, plants presented photochemical recovery. WD induced less vigorous seeds. FMS CR 1307 had the highest capacity to maintain its photochemical performance, due to alterations in water conductivity, resulting in greater seed production and vigor.