The influence of calcium channel blockers and ionophore on Cu2+-induced changes of the photosynthetic activity of runner bean plants (Phaseolus coccineus L.) was investigated. Excess Cu2+ was applied to leaves by injection or via the roots to examine a short/local or a long time/systemic effect of this metal, respectively. The changes in fluorescence parameters indicated that the mechanism of toxic action of Cu2+ ions on the photosynthetic apparatus was only partially connected with Ca2+ or Ca2+ channels. In young plants Ca2+ diminished especially photochemical and nonphotochemical dissipative processes induced by short- and long-term influence of excess Cu2+. Blocking of Ca2+ channels did not change direct Cu2+ action on the photosynthetic activity, however, their opening distinctly intensified the inhibitory effect of the metal. After a longer accumulation peri od the effect of Cu2+ ions did not change significantly due to modified Ca2+ penetration through membranes (except that caused by La3+). Copper directly introduced into older leaves diminished only at its highest concentration the activity both of the donor and acceptor sides of photosystem 2 (PS2) connected with Rfd decrease and increase of LNU. A similar effect was observed also after a long-term Cu2+ action, but disturbances on the acceptor side of PS2 were observed only at a higher Ca2+ content in the nutrient solution. Ca2+ ions, particularly after openning of channels, intensified direct inhibitory Cu2+ action on the photosynthetic activity expressed by decreased values of Fv/F0 and Rfd. Lanthanum and verapamil, at a lower Ca2+ content in the medium, decreased the photosynthetic activity of Cu2+-treated plants. This effect was also seen after additional Ca2+ supply to the leaves. and W. Maksymiec, T. Baszyński.
We studied cadmium toxicity in murine hepatocytes in vitro. Cadmium effects on intracellular free Ca2+ concentration ([Ca2+]i) were assayed, using a laser scanning confocal microscope with a fluorescent probe, Fluo-3/AM. The results showed that administration of cadmium chloride (CdCl2, 5, 10, 25 μM) resulted in a dose-dependent decrease of hepatocyte viability and an elevated aspartate aminotransfe rase (AST) activity in the culture medium (p<0.05 for 25 μM CdCl2 vs. control). Significant increases of lactate dehydrogenase (LDH) activities in 10 and 25 μM CdCl2-exposed groups were observed (p<0.05 and p<0.01, respectively). A greatly decreased albumin content and a more malondialdehyde (MDA) formation also occurred after CdCl2 treatment. The Ca2+ concentrations in the culture medium of CdCl2-exposed hepatocytes were significantly decreased, while [Ca2+]i appeared to be significantly elevated (p<0.05 or p<0.01 vs. control). We found that in Ca2+-containing hydroxyethyl piperazine ethanesulfonic acid-buffered salt solution (HBSS) only, CdCl2 elicited [Ca2+]i increases, which comprised an initially slow ascent and a strong elevated phase. However, in Ca2+-containing HBSS with addition of 2-aminoethoxydiphenyl borane (2-APB), CdCl2 caused a mild [Ca 2+] i elevation in the absence of an initial rise phase. Removal of extracellular Ca2+ showed that CdCl2 induced an initially slow [Ca2+]i rise alone without being followed by a markedly elevated phase, but in a Ca2+-free HBSS with addition of 2-APB, CdCl2 failed to elicit the [Ca2+]i elevation. These results suggest that abnormal Ca2+ homeostasis due to cadmium may be an important mechanism of the development of the toxic effect in murine hepatocytes. [Ca2+]i elevation in acutely cadmium-exposed hepatocytes is closely related to the extracellular Ca2+ entry and an excessive release of Ca2+ from intracellular stores., S. S. Wang, L. Chen, S. K. Xia., and Obsahuje bibliografii a bibliografické odkazy
The aim of this study was to measure expression levels of microRNAs (miRNAs) (miRNA-1, -15b and -21) in the rat myocardium after a single dose of ionizing radiation (6-7 Gy/min, total 25 Gy). The rats were treated with selected drugs (Atorvastatin, acetylsalicylic acid (ASA), Tadalafil, Enbrel) for six weeks after irradiation. MiRNAs levels were measured by RT-qPCR. Irradiation down-regulated miRNA-1 in irradiated hearts. In Tadalafil- and Atorvastatin-treated groups, miRNA-1 expression levels were further decreased compared with irradiated controls. However, Enbrel increased miRNA-1 level in irradiated hearts similarly to that in non-irradiated untreated group. Increase of miRNA-15b is pro-apoptotic in relationship with ischemia. Irradiation caused down-regulation of miRNA-15b. Administration of ASA in the irradiated group resulted in the increase of miRNA-15b expression compared to non-treated controls without irradiation. After Enbrel administration, miRNA-15b levels were overexpressed compared to non-treated normal group. MiRNA-21 belongs to the most markedly up-regulated miRNAs in response to cardiogenic stress. MiRNA-21 was increased nearly 2-fold compared to non-treated hearts whereas Tadalafil reduced miRNA-21 levels (about 40 %). Our study suggests that Enbrel and Tadalafil changed miRNAs expression values of the irradiated rats to the values of nonirradiated controls, thus they might be helpful in mitigation of radiation-induced toxicity., B. Kura, C. Yin, K. Frimmel, J. Krizak, L. Okruhlicova, R. C. Kukreja, J. Slezak., and Obsahuje bibliografii
Diclofenac is a drug commonly used in human and veterinary medicine for the treatment of diseases associated with inflammation and pain. Medicinal products enter waste and surface waters on an everyday basis and contaminate the aquatic environment. Fish are therefore permanently exposed to these chemicals dissolved in their aquatic environment. To simulate variable environmental conditions, the aim of our study was to examine adverse effects of diclofenac under different temperatures of cell incubation (18, 21, 24, 27 and 30 °C). Cytotoxic and -static effects of diclofenac in concentrations of 0.001 μg/ml, 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, 10 μg/ml and 100 μg/ml for the carp (Cyprinus carpio) cultured leukocytes were quantified using detection of lactate dehydrogenase released from damaged cells. Overall DCF cytotoxicity was relatively low and its impact was pronounced at higher temperature and DCF concentration. Cells growth inhibition is changing more rapidly but it is high mainly at the highest concentration from low temperature. DNA fragmentation was not detected in tested leukocyte cell line. CYP450 increased diclofenac cytotoxicity only at the highest concentration but at incubation temperatures 18 and 27 °C. Leukocyte viability is essential for immune functions and any change can lead to reduction of resistance against pathogens, mainly in cold year seasons, when the immune system is naturally suppressed.
This work aimed to study the effects of commercial doses of the fungicide, Mancozeb, on the photosynthetic apparatus of lettuce young leaves (YL) and expanded leaves (EL). Seven days after Mancozeb application, chlorophyll a fluorescence, pigment contents, lipid peroxidation, and proline content were evaluated. Independently of leaf age, Mancozeb treatment reduced the efficiency of photosystem II photochemistry, increased the nonphotochemical quenching and proline content, decreased pigment contents, and induced lipid peroxidation. Moreover, EL showed a more stable photosynthetic apparatus, less prone to oxidative damages compared with YL. The parameters measured proved to be good markers for the rapid and preliminary diagnosis of fungicide toxicity., M. C. Dias, P. Figueiredo, I. F. Duarte, A. M. Gil, C. Santos., and Obsahuje bibliografii
Agroclavine is a natural, clavine type of ergot alkaloid with D1 dopamine and ?-adrenoceptor agonistic properties. We showed previously that in vitro agroclavine enhances natural killer (NK) cell activity, increases interleukin-2 and interferon-gamma production and prolongs the survival time of tumor-bearing mice. The aim of this study was 1) to test the effect of agroclavine on NK activity in vivo, and 2) to assess the potential toxicity of high doses of agroclavine on cardiac and liver functions using creatine kinase MB (CKMB) and alanine aminotransferase (ALT) as biochemical markers in normal and stressed animals. The effect of stress was studied because we examined promising anticancer properties of agroclavine and malignant diseases are supposed to be a potent stressful event for patients. In our experiments 3-month-old male rats of the Wistar-Kyoto strain were used. Agroclavine was injected intraperitoneally (0.5 mg/kg or 0.05 mg/kg) 30 min before stress (four hours' restraint and immersion in 23 °C water). The animals were killed 30 min after stress, blood was collected and the spleen was removed. Non-stressed animals treated with agroclavine were killed 5 h after the drug administration. The results confirmed our previous in vitro results and showed that also in vivo agroclavine increases NK cell activity under non-stress conditions. Agroclavine only slightly increased CKMB and had no influence on ALT in non-stressed animals. These promising results are limited by the fact that agroclavine (0.5 mg/kg) diminished NK cell activity and significantly increased ALT and CKMB under stress conditions., M. Starec, A. Fišerová, J. Rosina, J. Málek, M. Kršiak., and Obsahuje bibliografii
In a laboratory experiment, we investigated the preference of larvae and adults of Coccinella septempunctata (Coleoptera: Coccinellidae) for three aphid species: two essential prey, Acyrthosiphon pisum and Aphis philadelphi, and a toxic prey Aphis sambuci. Surprisingly, the toxic aphid was consumed at twice the rate of the two essential prey species. The stages and genders of the ladybirds did not differ in their preference for aphid species. In the tritrophic interaction, in the field, on the elder host plant Sambucus nigra, A. sambuci is usually avoided by C. septempunctata. To measure ladybird preference, apterous females of the three selected aphid species were released in a Petri dish followed by a ladybird. After four hours, we removed the ladybird, counted the number of aphids of each species that survived, and calculated the number of aphids of each species consumed in total. We examined preference by considering separately the first two aphids consumed by a predator (early feeding), and all remaining aphids consumed thereafter (late feeding). The consumption rates of the first two individuals did not deviate from expected values with no preference; i.e., ladybirds fed on aphids without choice in the beginning of experiment when they were hungry. The ladybirds did express preference thereafter, but our hypothesis that the ladybirds should be able to distinguish among the aphids during later phase of the experiment and choose the most profitable species, or at least distinguish between essential and toxic prey, was rejected.
Citrus volkameriana (L.) plants were grown for 43 d in nutrient solutions containing 0, 2, 14, 98, or 686 µM Mn (Mn0, Mn2, Mn14, Mn98, and Mn686, respectively). To adequately investigate the combined effects of Mn nutrition and irradiance on photosystem 2 (PS2) activity, irradiance response curves for electron transport rate (ETR), nonphotochemical quenching (qN), photochemical quenching (qP), and real photochemical efficiency of PS2 (ΦPS2) were recorded under 10 different irradiances (66, 96, 136, 226, 336, 536, 811, 1 211, 1 911, and 3 111 µmol m-2 s-1, I66 to I3111, respectively) generated with the PAM-2000 fluorometer. Leaf chlorophyll content was significantly lower under Mn excess (Mn686) compared to Mn0; its highest values were recorded in the treatments Mn2-Mn98. However, ETR and ΦPS2 values were significantly lower under Mn0 compared to the other Mn treatments, when plants were exposed to irradiances ≥96 µmol m-2 s-1. Furthermore, Mn0 plants had significantly higher values of qN and lower values of qP at irradiances ≤226 and ≥336 µmol m-2 s-1, respectively, than those grown under Mn2-Mn686. Irrespective of Mn treatment, the values of ΦPS2 and qN decreased, while those of qP increased progressively by increasing irradiance from I136 to I3111. Finally, Mn2-Mn98 plants were less sensitive to photoinhibition of photosynthesis (≥811 µmol m-2 s-1) than the Mn686 (≥536 µmol m-2 s-1) and Mn0 (≥336 µmol m-2 s-1) ones. and I. E. Papadakis ... [et al.].
Current study evaluated the synergistic potential of propolis and
vitamin E against sub-acute toxicity of aluminum chloride on
different biochemical parameters and liver histology. Swiss albino
mice (n=42) were randomly divided into seven groups. Group I
received 0.2 ml of 0.9 % saline solution, Group II received
Propolis (50 mg/kg b.w.), Group III received vitamin E
(150 mg/kg b.w.), Group IV received AlCl3 50 mg/kg b.w.,
Group V received AlCl3 + Propolis, Group VI received AlCl3 +
vitamin E and Group VII received AlCl3 + propolis + vitamin E.
Blood and tissue samples were collected after 7 and 21 days. The
body weight of the animals significantly increased in all groups
except Group IV. The concentration of serum high density
lipoprotein significantly decreased in Group IV and increased in
Group V, VI and VII. The level of aspartate aminotransferase,
alanine transferase, alkaline phosphatase, triglycerides, total
cholesterol, and low density lipoprotein significantly increased in
AlCl3 treated group and increased in Group V, VI and VII. Tissue
sections were processed and stained by hematoxylin and eosin.
Group II showed cellular necrosis. Group V, VI showed decreased
number of vacuolization, sinusoidal spacing and macrophage cell
infiltration. Group VI showed less degenerative changes in the
third week. Vitamin E and propolis in combination with Al
provides more protection against AlCl3 induced toxicity.
Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, the cortical bone became thinner, and the trabecular thickness decreased significantly in TAA-treated rabbits, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.