Plasma corticosterone (CORT) measures are a common procedure to detect stress responses in rodents. However, the procedure is invasive and can influence CORT levels, making it less than ideal for monitoring CORT circadian rhythms. In the current paper, we examined the applicability of a non-invasive fecal CORT metabolite measure to assess the circadian rhythm. We compared fecal CORT metabolite levels to circulating CORT levels, and analyzed change in the fecal circadian rhythm following an acute stressor (i.e. blood sampling by tail veil catheter). Fecal and blood samples were collected from male adolescent rats and analyzed for CORT metabolites and circulating CORT respectively. Fecal samples were collected hourly for 24 h before and after blood draw. On average, peak fecal CORT metabolite values occurred 7-9 h after the plasma CORT peak and time-matched fecal CORT values were well correlated with plasma CORT. As a result of the rapid blood draw, fecal production and CORT levels were altered the next day. These results indicate fecal CORT metabolite measures can be used to assess conditions that disrupt the circadian CORT rhythm, and provide a method to measure long-term changes in CORT production. This can benefit research that requires long-term glucocorticoid assessment (e.g. stress mechanisms underlying health)., P. K. Thanos ... [et al.]., and Obsahuje seznam literatury
5-hydroxytryptamine (5-HT) is involved in the stress-induced alteration of colonic functions, specifically motility and secretion, but its precise mechanisms of regulation remain unclear. In the present study, we have investigated the effects of 5-HT on rat colonic mucosal secretion after acute water immersion restraint stress, as well as the underlying mechanism of this phenomenon, using short circuit current recording (ISC), real-time polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbance assays. After 2 h of water immersion restraint stress, the baseline ISC and 5-HT-induced ISC responses of the colonic mucosa were significantly increased. Pretreatment with selective 5-HT4 receptor antagonist, SB204070, inhibited the 5-HT-induced colonic ISC response by 96 % in normal rats and 91.2 % in acute-stress rats. However, pretreatment with the selective antagonist of 5-HT3 receptor, MDL72222 or Y-25130, had no obvious effect on 5-HT-induced ISC responses under either set of conditions. Total protein expression of both the mucosal 5-HT3 receptors and the 5-HT4 receptors underwent no significant changes following acute stress. Both colonic basal cAMP levels and foskolin-induced ISC responses were significantly enhanced in acute stress rats. 5-HT significantly enhanced the intracellular cAMP level via 5-HT4 receptors in the colonic mucosa from both control and stressed animals, and 5-HT-induced cAMP increase in stressed rats was not more than that in control rats. Taken together, the present results indicate that acute water immersion restraint stress enhances colonic secretory responses to 5-HT in rats, a process in which increased cellular cAMP accumulation is involved., Y. Li, L. S. Li, X. L. Zhang, Y. Zhang, J. D. Xu, J. X. Zhu., and Obsahuje bibliografii
Cortisol is secreted by the central hypothalamo-pituitary-adrenal axis and affects many target organs and tissues, particularly in response to stressor demands and infection. Recent data reporting cortisol synthesis in hair follicles have shown the existence of a parallel “peripheral” HPA-axis. However, although there is evidence from in vitro studies and single-observation comparisons between groups that cortisol from hair follicles reflects endocrine changes associated with stressor demands, there are no reports to date of repeated measurements of in vivo cortisol responsivity in hair to transitory stressors. This issue was investigated with three males who underwent 1 min cold pressor test (CP). Cortisol response in hair to stressor demand appears to be (a) swift but transitory, (b) localized to the site of the demand and (c) independent of central HPA-axis activity., C. F. Sharpley, K. G. Kauter, J. R. McFarlane., and Obsahuje seznam literatury
In order to study a possible effect of mini-invasive heart intervention on a response of hypothalamo-pituitary-adrenal stress axis, we analyzed four stress markers (cortisol, cortisone, DHEA and DHEAS) in 25 sows using minimally invasive heart catheterisation as the stress factor. The marker levels were assessed in four periods of the experiment, (1) the baseline level on the day before intervention, (2) after the introduction of anesthesia, (3) after conducting tissue stimulation or ablation, and (4) after the end of the catheterisation. For statistical analyses we used the non-parametric Friedman test for four dependent samples (including all four stages of the operation) or three dependent samples (influence of operation only, baseline level was excluded). Statistically significant differences in both Friedman tests were found for cortisol and for cortisone. Significant differences for DHEA as well as for DHEAS were found for all tested stages but not for the effect of operation itself. We have concluded that cortisol levels are blunted by the influence of anesthesia after its administration, and therefore decrease back to the baseline at the end of the operation. The other markers (cortisone, DHEA and DHEAS) acted as balanced systems against the injurious stress effect., H. Skarlandtová, M. Bičíková, P. Neužil, M. Mlček, V. Hrachovina, T. Svoboda, E. Medová, J. Kudlička, A. Dohnalová, Š. Havránek, H. Kazihnítková, L. Máčová, E. Vařejková, O. Kittnar., and Obsahuje bibliografii
Chlorophyll fluorescence has developed into a well-established noninvasive technique to study photosynthesis and by extension, the physiology of plants and algae. The versatility of the fluorescence analysis has been improved significantly due to advancements in the technology of light sources, detectors, and data handling. This allowed the development of an instrumention that is effective, easy to handle, and affordable. Several of these techniques rely on point measurements. However, the response of plants to environmental stresses is heterogeneous, both spatially and temporally. Beside the nonimaging systems, low- and high-resolution imaging systems have been developed and are in use as real-time, multi-channel fluorometers to investigate heterogeneous patterns of photosynthetic performance of leaves and algae. This review will revise in several paragraphs the current status of chlorophyll fluorescence imaging, in exploring photosynthetic features to evaluate the physiological response of plant organisms in different domains. In the conclusion paragraph, an attempt will be made to answer the question posed in the title., R. Valcke., and Obsahuje bibliografické odkazy
Present study was aimed to investigate sympathetic responses to mental stress with hypothesis that the presence of obesity in patients with hypertension has a modifying effect. Young male subjects, 8 with hypertension grade I, with BMI<25 kg/m2 (HT), 10 with hypertension grade I, and BMI>30 kg/m2 (HT OB), 14 healthy controls with BMI<30 kg/m2 (OB), and 13 healthy controls with BMI<25 kg/m2 (C) underwent the Stroop test. ECG was recorded continuously to evaluate heart rate variability (HRV). Blood pressure (BP) and catecholamine concentrations were measured at baseline, at the end of mental stress test and 15 min thereafter. Patients with HT demonstrated increased adrenaline concentrations and enhanced stress-induced noradrenaline release compared to that in healthy controls. In obese subjects, stress-induced increase of systolicBP was lower compared to lean individuals. Stress exposure induced a significant rise in the low frequency power component of HRV, however the increase was lower in the HT OB group compared to C. Obesity in patients with hypertension did not lead to a different reaction in comparison with lean hypertensive subjects. The present data demonstrate higher sympathoadrenal activity in early-stage of hypertension. Obesity is connected with higher resting systolicBP and modifies the HRV response to mental stress., A. Garafova, A. Penesova, E. Cizmarova, A. Marko, M. Vlcek, D. Jezova., and Obsahuje bibliografii
The effects of various stressors on insulin receptors in adipose, liver and skeletal muscle tissues were studied in rats exposed to acute or repeated stress. Adult male rats were exposed to immobilization (IMO) for 2.5 hours daily for 1, 7 and 42 days, or to hypokinesia (HK) for 1, 7 and 21 days. We determined the values of specific insulin binding (SIB) and insulin receptor binding capacity (IR) of plasma cell membranes from adipose, liver and muscle tissue (IMO groups), or insulin binding to isolated adipocytes and hepatocytes (HK groups). A significant decrease of SIB and IR was observed in rats exposed to acute stress (1x IMO) in muscle, adipose and liver tissues. However, in animals exposed to repeated stress (7x and 42x IMO), SIB and IR were diminished in the muscle tissue, whereas no significant changes were noted in the liver and adipose tissue. When tissue samples were collected 3-24 hours after exposure to IMO stress, no changes of SIB and IR were found in liver and adipose tissue, but insulin binding was lowered in skeletal muscles. In animals exposed to HK for one day, a decrease of SIB and IR was found in isolated adipocytes, but no changes in insulin binding were noted in the liver tissue. In rats exposed to HK for 7 and 21 days, values of IR were similar as in control group. Our results indicate a) the different changes of IR in the liver, fat and muscle tissues after exposure to stress situations, b) a long-term decrease of insulin binding in muscles of rats exposed to repeated IMO stress, and c) the return of reduced SIB and IR (induced by acute stress) to control values in the liver and adipose tissue after a short recovery period., L. Macho, M. Ficková, Š. Zórad, R. Kvetňanský., and Obsahuje bibliografii
Clinical reports suggest close interactions between stressors, particularly those of long duration, and liver diseases, such as hepatic inflammation, that is proposed to occur via reactive oxygen species. In the present study we have used 21-day social isolation of male Wistar rats as a model of chronic stress to investigate protein expression/activity of liver antioxidant enzymes: superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR), and protein expression of their upstream regulators: glucocorticoid receptor (GR) and nuclear factor kappa B (NFkB). We have also characterized these parameters in either naive or chronically stressed animals that were challenged by 30-min acute immobilization. We found that chronic isolation caused decrease in serum corticosterone (CORT) and blood glucose (GLU), increase in NFkB signaling, and disproportion between CuZnSOD, peroxidases (CAT, GPx) and GLR, thus promoting H2O2 accumulation and prooxidative state in liver. The overall results suggested that chronic stress exaggerated responsiveness to subsequent stressor at the level of CORT and GLU, and potentiated GLR response, but compromised the restoration of oxido-reductive balance due to irreversible alterations in MnSOD and GPx., J. Djordjevic ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Stress serves as a risk factor in the etiology of hypertension. The present study was designed to decipher the effect and mechanism of chronic stress on the progression of pressure overload-induced cardiac dysfunction. We used abdominal aortic constriction (AAC) to induce pressure overload with or without chronic restraint stress to establish the animal models. Echocardiographic analysis showed pressure overload-induced cardiac dysfunction was worsened by chronic stress. Compared with the AAC rats, there is a significant increase in cardiac hypertrophy, injury, apoptosis and fibrosis of the AAC + stress rats. Furthermore, we found the secretion of norepinephrine (NE) increased after the AAC operation, while the level of NE was higher in the AAC + stress group. Cardiomyocytes and cardiac fibroblasts isolated from neonatal rats were cultured and separately treated with 1, 10, 100 μM NE. The higher concentration NE induced more cardiomyocytes hypertrophy and apoptosis, cardiac fibroblasts proliferation and collagen expression. These results revealed that high level of NE-induced cardiomyocytes hypertrophy and apoptosis, cardiac fibroblasts proliferation and collagen expression further contributes to the effect of chronic stress on acceleration of pressure overloadinduced cardiac dysfunction., W. Liu, X. Wang, Z. Mei, J. Gong, X. Gao, Y. Zhao, J. Ma, F. Xie, L. Qian., and Obsahuje bibliografii
The aim of this study was to investigate the reaction of the hypothalamo-pituitary-adrenocortical (HPA) system to various stressors (fasting, crowding, cold and heat) by measuring blood ACTH and corticosterone (CORT) concentration as well as the cholesterol (CHOL) content in the adrenals. To examine the effects of stress termination, the rats were returned and kept under control conditions for the same period as that of stress duration (supposed recovery period). According to our results HPA system was activated by all the stressors applied. Heat seems to be the strongest stressor since the exposure of animals to a high ambient temperature resulted in the greatest rise of plasma ACTH concentration as well as CORT synthesis and secretion. These values remained elevated after the stress termination i.e. after the rats had been returned to room temperature. Fasting seems to be the weakest stressor given because it causes the smallest increase in blood ACTH and CORT concentrations. Moreover, in refed rats the HPA function was fully recovered. In conclusion, the various stressors applied seem to induce a different response of the HPA system as judged by quantitative changes in ACTH and CORT release., J. Djordjević, G. Cvijić, V. Davidović., and Obsahuje bibliografii