Near-isogenic lines of maize varying in their genes for flavonoid biosynthesis were utilized to examine the effects of foliar flavonoids and nutrient deficiency on maximum net photosynthetic rate (PN) and chlorophyll (Chl) fluorescence (Fv/Fm) in response to ultraviolet-B (UV-B) radiation. Plants with deficient (30 to 70 % lower N, K, Mn, Fe, and Zn) and sufficient nutrients were exposed to four irradiation regimes: (1) no UV-B with solar photosynthetically active radiation (PAR), (2) two day shift to ambient artificial UV-B, 8.2-9.5 kJ m-2 d-1 (21-25 mmol m-2 d-1); (3) continuous ambient artificial UV-B; (4) continuous solar UV-B in Hawaii 12-18 kJ m-2 d-1 (32-47 mmol m-2 d-1). The natural ratio of UVB: PAR (0.25-0.40) was maintained in the UV-B treatments. In the adequately fertilized plants, lines b and lc had higher contents of flavonoids and anthocyanins than did lines hi27 and dta. UV-B induced the accumulation of foliar flavonoids in lines hi27 and b, but not in the low flavonoid line dta or in the high flavonoid line lc. In plants grown on deficient relative to adequate nutrients, flavonoid and anthocyanin contents decreased by 30-40 and 40-50 %, respectively, and Chl a and Chl b contents decreased by 30 and 70 %, respectively. The UV-B treatments did not significantly affect PN and Fv/Fm in plants grown on sufficient nutrients, except in the low flavonoid lines dta and hi27 in which PN and Fv/Fm decreased by ∼15 %. PN, Fv/Fm, and stomatal conductance decreased markedly (20-30 %) in all lines exposed to UV-B when grown on low nutrients. The decrease in Fv/Fm was 10 % less in higher flavonoid lines b and lc. The photosynthetic apparatus of maize readily tolerated ambient UV-B in the tropics when plants were adequately fertilized. In contrast, ambient UV-B combined with nutrient deficiency significantly reduced photosynthesis in this C4 plant. Nutrient deficiency increased the susceptibility of maize to UV-B-induced photoinhibition in part by decreasing the contents of photoprotective compounds. and T. S. L. Lau ... [et al.].
Photosynthesis, photorespiration, and chlorophyll (Chl) fluorescence in green and red Berberis thunbergii leaves were studied with two different measuring radiations, red (RR) and "white" (WR). The photosynthetic and photorespiration rates responded differently to the different radiation qualities, which indicate that the carboxylase and oxygenase activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were affected. Differences in photosynthetic rate between the two color leaves were less under RR than under WR. However, this reduced difference in photosynthetic rate was not correlated with the stomatal response to the measuring radiation qualities. Compared with the WR, the RR reduced the differences in dark-adapted minimum and maximum fluorescence, steady-state fluorescence, light-adapted maximum fluorescence, and actual photochemical efficiency (ΦPS2) of photosystem 2 (PS2), but enlarged the difference in non-photochemical quenching between the two color leaves. Differences in both maximum quantum yield of PS2 and ratio of ΦPS2 to quantum yield of CO2 fixation between the two color leaves were similar under the two measuring radiations. To exclude disturbance of radiation attenuation caused by anthocyanins, it is better to use RR to compare the photosynthesis and Chl fluorescence in green versus red leaves. and P.-M. Li ... [et al.].
This work aimed to study the effects of commercial doses of the fungicide, Mancozeb, on the photosynthetic apparatus of lettuce young leaves (YL) and expanded leaves (EL). Seven days after Mancozeb application, chlorophyll a fluorescence, pigment contents, lipid peroxidation, and proline content were evaluated. Independently of leaf age, Mancozeb treatment reduced the efficiency of photosystem II photochemistry, increased the nonphotochemical quenching and proline content, decreased pigment contents, and induced lipid peroxidation. Moreover, EL showed a more stable photosynthetic apparatus, less prone to oxidative damages compared with YL. The parameters measured proved to be good markers for the rapid and preliminary diagnosis of fungicide toxicity., M. C. Dias, P. Figueiredo, I. F. Duarte, A. M. Gil, C. Santos., and Obsahuje bibliografii
The aim of this work was to study the effect of the daily ingestion of a purified anthocyanin extract from red grape skin on rat serum antioxidant capacity (ORAC) and its safety for the intestinal epithelium. The study was carried out in rats orally administered with the extract for 10 days in either normal physiological conditions or exposed to a pro-oxidant chemical (CCl4). The oral administration of the extract significantly (P<0.05) enhanced the ORAC va lue of the deproteinised serum of about 50 % after 10 days of ingestion. Anthocyanin administration was also able to reverse completely the decrease in the serum ORAC activity induced by the CCl4 treatment. Experiments with Ussing chamber mounted intestine allowed to exclude any toxicity of the extract for the intestinal epithelium. In conclusion, our results demonstrate that the purified anthocyanin extract from red grape skin e nhances the total antioxidant capacity of the serum in either normal physiological condition or during oxidative stress induction, revealing a protective role against the decrease in the serum antioxidant capacity induced by a pro-oxidant compound., M. G. Lionetto ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The effectiveness of eight spectral reflectance indices for estimating chlorophyll (Chl) content in leaves of Eugenia uniflora L., a tropical tree species widely distributed throughout the world and a key species for ecosystem restoration projects, was evaluated. Spectral reflectance indices were tested using sun and shade leaves with a broad variation in leaf mass per area (LMA). Shortly after plants were exposed to chilling temperatures, there was a dramatic visible change in some sun leaves from green to red. Prior to testing Chl-related reflectance indices, the green and red leaves were separated according to the anthocyanin reflectance index (ARI). Slightly green to dark green leaves corresponded to an ARI value less than 0.11 (n = 107), whereas slightly red to red leaves corresponded to an ARI value greater than 0.11 (n = 35). To estimate leaf Chl, two simple reflectance indices (SR680 and SR705), two normalized difference indices (ND680 and ND705), two modified reflectance indices (mSR705 and mND705), a modified Chl absorption ratio index (mCARI705) and an index insensitive to the presence of anthocyanins (CIre) were evaluated. Good estimates of leaf Chl content were obtained using the reflectance indices tested regardless of the presence of anthocyanins and changes in LMA. Based on the coefficients of determination (r2) and the root mean square errors (RMSɛc) the best results were obtained with reflectance indices measured at wavelengths of 750 and 705 nm. Considering the performance of the models the best reflectance indices to estimate Chl contents in E. uniflora leaves with a broad variation in LMA and anthocyanin contents was SR705 and mCARI705., M. S. Mielke, B. Schaffer, A. C. Schilling., and Obsahuje bibliografii
Photosynthetic organs are often characterized by anthocyanins being accumulated either in the epidermal or in the mesophyll cells making these tissues to turn reddish-brown in colour. It has been hypothesized that these pigments protect underlying chloroplasts from light-stress because they absorb photons of the photosynthetically active waveband. However, the photoprotective role of anthocyanins has not been undoubtedly shown on a broad range of species. In this study, green and anthocyanic areas of leaves of Pelargonium × hortorum, the latter possessing variable levels of anthocyanins, were compared using pigment analysis and pulse amplitude modulated in vivo chlorophyll (Chl) fluorescence. Quenching analysis of the induction and dark relaxation curves of slow Chl fluorescence kinetics showed that at photoinhibitory conditions [by applying above-saturation light intensity of 1,600 μmol(quantum) m-2 s-1 white light at low (4°C) temperature], anthocyanic areas were at least equally sensitive to photoinhibition as green leaf areas. In fact, the level of photoinhibition tended to be proportional to the level of anthocyanin accumulation suggesting that this characteristic was indicative of the photoinhibitory risk. The results of the present study clearly show that anthocyanins in leaf areas of Pelargonium do not afford a photoprotective advantage., G. Liakopoulos, I. Spanorigas., and Obsahuje bibliografii
The amphibious plant species of intermittent aquatic habitats thrive both submerged and emerged. In order to outline the adaptive characters of these two life forms photochemical efficiency of photosystem 2, leaf contents of chlorophyll (Chl) a and b, carotenoids (Car), anthocyanins (Ant), and UV-B absorbing compounds (UV-B abs), and root aerenchyma and arbuscular mycorrhizal (AM) colonisation were studied in Glyceria fluitans, Gratiola officinalis, Ranunculus lingua, Teucrium scordium, Sium latifolium, Sparganium emersum, and Veronica anagallis-aquatica. Water level fluctuations did not exert a severe effect on photon harvesting efficiency. Submerged specimens had higher contents of Car and Ant whereas higher contents of UV-B abs were found in emerged specimens indicating efficient protection against the harmful effects of solar radiation. Roots of all species studied had extensive aerenchyma and were colonised by AM fungi, which were significantly more abundant in emerged specimens. This is the first report on AM symbiosis in S. latifolium and S. emersum. and N. Šraj-Kržič ... [et al.].
In view of predicted climatic changes for the Mediterranean region, study of high temperature and drought impacts on physiological responses of endangered species regains relevance. In this context, micropropagated plants of Tuberaria major, a critically endangered species, endemic of Algarve, were transferred to a controlled-environment cabinet with day/night temperatures set at 25/18°C (Reference) or 32/21°C (HT). After 15 days of HT acclimation, some plants were subjected to progressive drought followed by rewatering. The enhancement of temperature alone did not affect water relations and photosynthetic rates (PN) but the stomatal conductance (gs) exhibited a 3-fold increase in comparison with reference plants. The maximum quantum yield of photosystem (PS) II (Fv/Fm), the effective quantum yield of PSII photochemistry (ΦPSII), carotenoid (Car) and anthocyanin content enhanced, whereas the quantum yields of regulated (ΦNPQ) and nonregulated (ΦNO) energy dissipation decreased. Drought combined with HT reduced predawn leaf water potential to values of about -1.3 MPa, which had adverse effects on gas exchange and PSII activity. Values of PN and gs were 71 and 79% lower than those of HT plants. An impairment of photochemical activity was also observed: the decrease in ΦPSII and the increase of ΦNPQ. However, an irreversible photoinhibitory damage had not occurred. Carotenoid and anthocyanin content remained elevated and soluble sugars (SS) increased twice, whereas proline and MDA accumulation was not detected. On the first 24 h after water-stress relief, gs, PN, ΦPSII, and ΦNPQ did not recover, but SS returned to the reference level. Overall, T. major acquired an adequate capacity for a protection against the development of oxidative stress during drought and water recovery under HT. These findings suggest that T. major is prepared to deal with predicted climate changes., M. L. Osório, J. Osório, A. Romano., and Obsahuje bibliografii
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence - a time when pigment concentrations are dynamically changing - but that the accuracy of the estimate varies across species., Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters., G. Y. Li, D. P. Aubrey, H. Z. Sun., and Obsahuje bibliografii
Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions. and Y. Manetas, C. Buschmann.