Diclofenac is a drug commonly used in human and veterinary medicine for the treatment of diseases associated with inflammation and pain. Medicinal products enter waste and surface waters on an everyday basis and contaminate the aquatic environment. Fish are therefore permanently exposed to these chemicals dissolved in their aquatic environment. To simulate variable environmental conditions, the aim of our study was to examine adverse effects of diclofenac under different temperatures of cell incubation (18, 21, 24, 27 and 30 °C). Cytotoxic and -static effects of diclofenac in concentrations of 0.001 μg/ml, 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, 10 μg/ml and 100 μg/ml for the carp (Cyprinus carpio) cultured leukocytes were quantified using detection of lactate dehydrogenase released from damaged cells. Overall DCF cytotoxicity was relatively low and its impact was pronounced at higher temperature and DCF concentration. Cells growth inhibition is changing more rapidly but it is high mainly at the highest concentration from low temperature. DNA fragmentation was not detected in tested leukocyte cell line. CYP450 increased diclofenac cytotoxicity only at the highest concentration but at incubation temperatures 18 and 27 °C. Leukocyte viability is essential for immune functions and any change can lead to reduction of resistance against pathogens, mainly in cold year seasons, when the immune system is naturally suppressed.
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intraabdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Depression is a complex disorder related to chronic inflammatory processes, chronic stress changes and a hippocampal response. There is a increasing knowledge about the role of glial cells in nutrient supply to neurons, maintenance of synaptic contacts and tissue homeostasis within the CNS. Glial cells, viewed in the past as passive elements with a limited influence on neuronal function, are becoming recognized as active partners of neurons and are starting to be discussed as a possible therapeutic target. Their role in the pathogenesis of depressive disorders is also being reconsidered. Attention is devoted to studies of the different types of antidepressants and their effects on transmembrane signaling, including levels of α subunits of G proteins in C6 glioma cells in vitro as a model of postsynaptic changes in vivo. These models indicate similarities in antidepressant effects on G proteins of brain cells and effector cells of natural immunity, natural killers and granulocytes. Thus, an antidepressant response can exhibit certain common characteristics in functionally different systems which also participate in disease pathogenesis. There are, however, differences in the astrocyte G-protein responses to antidepressant treatment, indicating that antidepressants differ in their effect on glial signalization. Today mainstream approach to neurobiological basis of depressive disorders and other mood illnesses is linked to abnormalities in transmembrane signal transduction via G-protein coupled receptors. Intracellular signalization cascade modulation results in the activation of transcription factors with subsequent increased production of a wide array of products including growth factors and to changes in cellular activity and reactivity., M. Páv, H. Kovářů, A. Fišerová, E. Havrdová, V. Lisá., and Obsahuje bibliografii a bibliografické odkazy