The xanthophyll cycle and the water-water cycle had different functional significance in chilling-sensitive sweet pepper upon exposure to chilling temperature (4 °C) under low irradiance (100 µmol m-2 s-1) for 6 h. During chilling stress, effects of non-photochemical quenching (NPQ) on photosystem 2 (PS2) in dithiothreitol (DTT) fed leaves remained distinguishable from that of the water-water cycle in diethyldithiocarbamate (DDTC) fed leaves. In DTT-fed leaves, NPQ decreased greatly accompanied by visible inhibition of the de-epoxidized ratio of the xanthophyll cycle, and maximum photochemical efficiency of PS2 (Fv/Fm) decreased markedly. Thus the xanthophyll cycle-dependent NPQ could protect PS2 through energy dissipation under chilling stress. However, NPQ had a slighter effect on photosystem 1 (PS1) in DTT-fed leaves than in DDTC-fed leaves, whereas effects of the water-water cycle on PS1 remained distinguishable from that of NPQ. Inhibiting superoxide dismutase (SOD) activity increased the accumulation of O2, the oxidation level of P700 (P700+) decreased markedly relative to the control and DTT-fed leaves. Both Fv/Fm and NPQ changed little in DDTC-fed leaves accompanied by little change of (A+Z)/(V+A+Z). This is the active oxygen species inducing PS1 photoinhibition in sweet pepper. The water-water cycle can be interrupted easily at chilling temperature. We propose that during chilling stress under low irradiance, the xanthophyll cycle-dependent NPQ has the main function to protect PS2, whereas the water-water cycle is not only the pathway to dissipate energy but also the dominant factor causing PS1 chilling-sensitivity in sweet pepper. and X.-G. Li ... [et al.].
Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
The paper contains short description of a special device developed for study of electrical after-effect in vegetable cellular tissues after short electric pulses applied to the tissue. The device contains generator of the pulses and the microprocessor controlling circuits for time arrangement of the pulse amplification and collection of data for further evaluation. The pulses are based on AC signal with frequency 10-100 kHz with the amplified voltage up to ±240V and duration 1-10 ms. After finishing the individual pulse, the AC source signal continues, but amplitude on the tissue is 21. 5times lower. The data about AC voltage and current intensity are continuously collected with frequency 800 kHz and then fed to PC USB input that was used to calculate time chart of electric properties of the tissue, its complex permittivity and specific complex conductivity. An example of the obtained results on potato tissue is given. and Práce obsahuje krátký popis speciálního zařízení vyvinutého pro studium elektrických jevů v zeleninové buněčné tkáni po krátkých elektrických pulsech. Zařízení se skládá z generátoru nosného signálu, mikroprocesorem řízené jednotky pro amplitudovou modulaci uvedeného nosného signálu, zesilovače pro výkonové zesílení a jednotky pro sběr dat pro další vyhodnocení. Užívá se nosný signál frekvence 10-100 kHz, modulovaný do pulsů strváním 1-10 ms a amplitudě do ±240 V. Po skončení individuálního pulsu střídavý signál pokračuje, ale jeho amplituda se snižuje 21,5krát; měření na tkáni pokračuje jako nedestruktivní. Data okamžitých hodnot napětí a proudu na zkoumané tkáni jsou snímána sfrekvencí 800 kHz. Tato data jsou přivedena na USB vstup PC a zde použita k výpočtu časového průběhu elektrických vlastností tkáně, její komplexní permitivity a měrné komplexní vodivosti. Analýza je demonstrována na příkladu (pletivo bramboru).
Little is known about the viability of myxozoan actinospore stages after harvest from laboratory cultures of infected oligochaete worms. The viability and reactivity of actinospores of three myxozoan species was evaluated after short-term storage at 4°C and 12°C. Two methods of determining actinospore viability were compared: differential fluorescent staining and direct microscopic observation of morphological indicators of spore integrity. Spore reactivity was quantified by measuring polar filament discharge rates in a micro-assay with fish mucus substrate and mechanical stimulation by vibration. The age-dependent viability of the three species showed clear differences. Myxobolus cerebralis actinospores had the shortest effective life span whereas Henneguya nuesslini actinospores survived significantly longer. Storage at lower temperatures yielded higher viability in all species. Myxobolus pseudodispar actinospores were significantly robust up to 12°C when assessed by staining, but showed similar viability characteristics as H. nuesslini when analyzed morphologically. Evaluation of spore viability by fluorescent staining correlated with morphological assessment, although fewer viable actinospores were usually detected microscopically. Polar filament discharge activity of morphologically intact actinospores did not significantly decrease until the third day of storage compared to freshly harvested samples. The results indicate that durability and reactivity trends during storage of actinospores differ among myxozoan species.
Diurnal courses in net photosynthetic rate (PN), stomatal conductance (gs), leaf water potential (ψ), internal CO2 concentration (ci), and water use efficiency (WUE) were studied as season progressed, in relation to environmental factors in field grown Prunus amygdalus. In sun leaves PN reached maximum between 09:00 to 11:00 h and subsequently declined when high temperature and low humidity occurred. An increase was observed late in the afternoon. A decrease in gs and ψ was found as season progressed in both years of measurements. In periods of high evaporative demand, ψ was very low, however, it did not explain the reductions of PN in all the three periods (spring, early and late summer). Midday depression of PN and gs seemed to be related with leaf temperature (Tl) and high irradiance. Increase in ci and F0 and decrease in Fv/Fm found between 12:00 and 14:00 h corresponded to the decrease in PN. Therefore, a transient modification of photosynthetic machinery might be considered. WUE was negatively correlated with vapour pressure difference of leaf to air, that decreased during the day. The September values, higher than in the previous months, were due to the lower seasonal decreases in PN than in gs. and M. C. Matos ... [et al.].
Diurnal and seasonal trends in net photosynthetic rate (PN), stomatal conductance (g), transpiration rate (E), vapour pressure deficit, temperature, photosynthetic photon flux density, and water use efficiency (WUE) were compared in a two-year-old Dalbergia sissoo and Hardwickia binata plantation. Mean daily maximum PN in D. sissoo ranged from 21.40±2.60 µmol m-2 s-1 in rainy season I to 13.21±2.64 µmol m-2 s-1 in summer whereas in H. binata it was 20.04±1.20 µmol m-2 s-1 in summer and 13.64±0.16 µmol m-2 s-1 in winter. There was a linear relationship between daily maximum PN and gs in D. sissoo but there was no strong linear relationship between PN and gs in H. binata. In D. sissoo, the reduction in gs led to a reduction in both PN and E enabling the maintenance of WUE during dry season thereby managing unfavourable environmental conditions efficiently whereas in H. binata, an increase in gs causes an increase of PN and E with a significant moderate WUE. and S. G. Saraswathi, K. Paliwal.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation. and B. Pollet ... [et al.].
We analyzed the eddy covariance measurements of momentum, mass, and energy taken daily throughout five consecutive seasonal courses (i.e. 840 d after planting) of a pineapple [Ananas comosus (L.) Merr. cv. Red Spanish] field growing in the Orinoco lowlands. This field provides an opportunity for micrometeorological studies because of the flat and windy site; the seasonal weather including ENSO effects and the Crassulacean Acid Metabolism (CAM) physiology of the crop were additional attributes. Soil CO2 flux was quantified and added to the net ecosystem exchange in order to obtain the canopy flux (FC). The canopy CO2 flux partially followed the four phases of CAM sensu Osmond (1978). The daily pattern of gaseous exchange in pineapple showed a continuum spectrum in which a major proportion of CO2 uptake occurring during the daytime was common and in which the CAM expression was related to day and nocturnal CO2 uptake. However, the benefits of CO2 uptake at low water cost were constrained by the limited nocturnal CO2 uptake. Seasonal and ontogenetic changes affected the energy exchange as well as the partitioning of available energy into sensible (QH) and latent (QLE) heat. When the hourly net radiation (QRn) reached its maximum value, latent heat flux (QLE) to available energy throughout the vegetative and reproductive stages was 0.65, 0.05, 0.30, 0.11, and 0.33 for the 1997 wet season, 1997/98 dry season, 1998 wet season, 1998/99 dry season, and 1999 wet season, respectively. Throughout the growth period, we found the pivotal role of surface conductance (gs) in both QLE and FC. Furthermore, the canopy responded to environmental changes. During the wet seasons the gs was strongly influenced by humidity mole fraction deficit and was usually lower than aerodynamic conductance, whereas during the dry seasons, soil water deficit limited evapotranspiration and production rates. For the fully canopy cover, the hourly trend of marginal water cost of pineapple carbon gain in the dry seasons indicated that gs became sufficiently efficient to reduce the amount of water transported per unit of carbon gain. In the wet season, the coupling of CO2 uptake and stomatal conductance was more effective in maintaining a higher proportionality between QLE and gs. and J. San-José, R. Montes, N. Nikonova.
The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon., T. Y. Orujova, S. M. Bayramov, U. A. Gurbanova, H. G. Babayev, M. N. Aliyeva, N. M. Guliyev, Y. M. Feyziyev., and Obsahuje bibliografii
The goal of this paper was to test the hypothesis that weather conditions, such as temperature and rainfall, affect egg colouration in the great reed warbler Acrocephalus arundinaceus. We failed to find strong support for this hypothesis; nevertheless, our results indicate that temperature has an effect on some egg colour characteristics. Eggshell brightness (PC1) increased with increasing temperature at laying and eggs were darker in the colder year of the two-year study. On the other hand, UV-blue colouration (PC2) scores were higher in the warmer year. The amount of rainfall, however, had no effect on eggshell colouration. As there is an indication from other studies that weather may have an effect on egg appearance through the food availability, we encourage further testing the environmental hypothesis in other bird species. If this holds for more bird species, this would have important implications for the hypotheses about the adaptive function of bright eggshell colouration.