By investigating the RD-Ca (dark respiration rate-atmospheric CO2 concentration) and PN (net photosynthetic rate)-Ca curves of bamboo (Fargesia denudata) and poplar (Populus cathayanna), we found that: (1) the minimal RD was close to ambient CO2 concentration, and the elevated or decreased atmospheric CO2 concentration enhanced the RD of both species; (2) the response curves of RD-Ca were simulated well by quadratic function. This phenomenon might be an inherent property of leaf R of F. denudata and P. cathayanna. If this was true, it implies that effect of CO2 on
RD could be interpreted with the relationship of RD-Ca curves and the quadratic function. and Y.-Z. Qiao ... [et al.].
Plants differ in how much the response of net photosynthetic rate
(PN) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10-35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (g'm). In A. thaliana, the optimum T of PN at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and g'm were also unaffected by growth T. There was no evidence of TPU limitation of PN in this species over the range of measurement conditions. In contrast, the optimum T of PN increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and g'm, as well as the T at which TPU limited PN all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.
We investigated the acclimation of seedlings of three tropical rain forest sub-canopy Garcinia species (G. xanthochymus, G. cowa, and G. bracteata) after transfer from 4.5 (LI) to 40 % (HI) sunlight and 12.5 (MI) sunlight to HI (LH1 and LH2 denoting transfer from LI to HI and MI to HI transfer, respectively). The changes of chlorophyll (Chl) fluorescence, net photosynthetic rate (PN), dark respiration rate (RD), Chl content per unit area (Chlarea), leaf mass per unit area (LMA), and seedling mortality were monitored over two months after transfer. These parameters together with leaf anatomy of transferred and control seedlings (kept in LI, MI, and HI) were also examined after two months. No seedlings died during the two months. Fv/Fm, PN, and Chlarea of the transferred seedlings decreased in the first 3 to 12 d. LH1 leaves showed larger reduction in Fv/Fm (>23 % vs. <16 %) and slower recovery of Fv/Fm than LH2 leaves. PN started to recover after about one week of I transfer and approached higher values in all G. cowa seedlings and G. xanthochymus LH1 seedlings than those before the transfer. However, PN of G. bracteata seedlings approached the values before transfer. The final PN values in leaves of transferred G. xanthochymus and G. cowa seedlings approached that of leaves kept in HI, while the final PN values of transferred leaves of G. bracteata were significantly lower than that of leaves grown under HI (p<0.05). RD of G. xanthochymus LH1 seedlings and all G. cowa seedlings increased and approached the value of the seedlings in HI. The final Chlarea of both G. xanthochymus and G. cowa approached the values before transfer, but that of G. bracteata did not recover to the level before transfer. The final Chlarea of all transferred seedlings was not significantly different from that of seedlings in HI except that G. cowa LH1 seedlings had higher Chlarea than that in HI. LMA decreased within 2 d and then increased continuously until about 30 d and approached the value under HI. Spongy/palisade mesophyll ratio decreased after transfer because of the increase in palisade thickness. Leaf thickness did not change, so LMA increase of transferred seedlings was mainly due to the increase of leaf density. Thus the mature leaves under LI and MI of G. xanthochymus and G. cowa are able to acclimate to HI by leaf physiological and anatomical adjustment, while G. bracteata had limited ability to acclimate to HI. and X. R. Guo, K. F. Cao, Z. F. Xu.
Nitrogen (N) starvation resulted in degreening, inhibition of photosynthetic oxygen evolution and dark respiration, reduced survival, and increased age-specific mortality in both Chlorella fusca and Chlorella vulgaris. Analysis of in vivo chlorophyll (Chl) fluorescence induction kinetics revealed the presence of N-starvation-induced changes at the level of degreened thylakoids in both species. These changes included decreased yield of the photochemistry of photosystem 2 (PS2), and a declined photosynthetic efficiency. Synthesis of secondary carotenoids represented a biochemical change in carotenogenesis that had a photoprotective effect in degreened C. fusca. This inferred photoprotection was reflected in the delayed inhibition of oxygen evolution and improved survival of C. fusca under N-starvation. The effect was further elucidated by comparison with C. vulgaris which was not able to synthesize secondary carotenoids under the same conditions.
The neotropical genus Clusia comprises arborescent species exhibiting Crassulacean Acid Metabolism (CAM) as was first reported for a Mexican species, Clusia lundellii. Here, the occurrence of CAM photosynthesis was studied in 20 species of Clusia, 18 from Mexico, and 2 from Guatemala, using leaf carbon isotopic composition. In most species, samples from individuals collected in different locations were analyzed. CAM was present in at least 11 species, eight of which contained specimens with δ13C values less negative than -20.0 ‰, indicating strong CAM (C. chanekiana, C. flava, C. lundellii, C. mexicana, C. quadrangula, C. rosea, C. suborbicularis, and C. tetra-trianthera). δ13C was highly variable in some species, but CAM expression was not correlated to life form (epiphytic, hemiepiphytic, terrestrial) or habitat. CAM specimens were not collected at altitudes above 1 700 m a.s.l. and J. G. Vargas-Soto, J. L. Andrade, K. Winter.
We investigated the carbon isotope ratios and the diurnal pattern of malate accumulation in leaves and aerial roots of eight species of Phalaenopsis grown in greenhouses. The leaves of all the species showed carbon isotope ratios and the diurnal patterns of malate content typical of CAM plants. However, the aerial roots exhibited a large variation in the diurnal pattern of malate content among species and even among plants within the same species, although carbon isotope ratios were always CAM-like values. Some aerial roots showed the typical diurnal pattern of CAM, but others maintained high or low malate contents during a day without fluctuation. In order to characterize more strictly the nature of the malate variation in the aerial roots, we further investigated a possible variation of the diurnal pattern of malate among different aerial roots within an individual for Phalaenopsis amabilis and P. cornu-cervi. The diurnal pattern of malate content was varied even among different aerial roots within the same plant. Thus the photosynthetic carbon metabolism in aerial roots of orchids is fairly complex. and H. Motomura ... [et al.].
Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D. and M. T. Grzesiak ... [et al.].
The photosynthetic pathway of plant species collected at Menyuan, Henan, and Maduo sites, east of Tibetan Plateau, China, during the growing season were studied using stable carbon isotopes in leaves. The 232 samples leaves analyzed belonged to 161 species, 30 families, and 94 genera. The δ13C values (from -24.6 to -29.2 ‰) indicated that all the considered species had a photosynthetic C3 pathway. The absence of plant species with C4 photosynthetic pathway might be due to the extremely low air temperature characterizing the Tibetan Plateau. The average δ13C value was significantly (p<0.05) different between annuals and perennials at the three considered study sites. Hence the longer-lived species had greater water-use efficiency (WUE) than shorter-lived species, that is, longer-lived species are better adapted to the extreme environmental conditions of the Tibetan Plateau. and M. C. Li ... [et al.].
Calycanthus chinensis is an endangered plant of the national second-grade protection of China restricted in a small area in Zhejiang Province. We studied parameters of photosynthesis, chlorophyll (Chl) contents, and Chl fluorescence (minimum fluorescence, F0, maximum fluorescence, Fm, variable fluorescence, Fv, and Fv/Fm) of C. chinensis and Chimonanthus praecox. C. chinensis had lower compensation irradiance but higher saturation irradiance than C. praecox. Hence C. chinensis has more advantage in obtaining and utilizing photon energy and higher Chl content, and is more adaptive to higher temperature and propitious to thermal dissipation than C. praecox. In addition, C. chinensis produces abundant, well-preserved seed with a higher germination rate and a wider adaptability to temperature than C. praecox. Thus C. chinensis is prone to survival and viability, and gets rid of the endangered plant species of the national second-grade protection of China. and L. Z. Mao ... [et al.].
We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations (Γ) of field-grown leaves varied between 2.5-10.7 cm3(CO2) m-3, with a mean of 5.4 cm3(CO2) m-3. From September onwards field leaves showed CO2 compensation concentrations from 6.6-21.1 cm3(CO2) m-3, with a mean of 13.1 cm3 m-3 well into the C3-C4 intermediate range. The seasonal variability in Γ did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (PN) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of PN to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration. and M. O. Bärlocher ... [et al.].