Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol-1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3., L. Zhang, L. L. Jia, J. X. Sui, M. X. Wen, Y. J. Chen., and Obsahuje bibliografii
Salicylic acid (SA) and polyamines (PA) are widely used to overcome various abiotic stresses including salt (NaCl) stress in plants. In the present investigation, co-application efficacies of SA and PA on the salt stress (200 mM NaCl) were evaluated in Lycopersicon esculentum. After transplantation, at 10-d stage, seedlings were exposed to NaCl through soil and then allowed to grow till 30-d stage. At 31-d stage of growth, plants were sprayed with double distilled water (control) or spermidine (1.0 mM) and/or SA (10-5 M). The salt stress significantly reduced the growth, gas-exchange parameters, but increased antioxidant enzymes and proline content in the leaves. Moreover, the loss caused by salt stress was successfully restored by the following treatment of spermidine and SA., Q. Fariduddin, T. A. Khan, M. Yusuf, S. T. Aafaqee, R. R. A. E. Khalil., and Obsahuje bibliografii
Salinised (150 mM NaCl for 15 d) roots excised from salt sensitive wheat cultivar Giza 163 showed about 15-fold increase in the ratio of Na/K while salt tolerant Sakha 92 exhibited only 7.5-fold increase compared to their control ratios. Root ratio of saturated/unsaturated fatty acids was stimulated twice in the sensitive cultivar versus 1.7-fold increase in the tolerant ones. Salinity enhanced greatly the accumulation of spermine (Spm) and spermidine (Spd) contents associated with a decrease in putrescine (Put) content in both wheat cultivars. Higher ratios of Spm+Spd/Put associated with lower content of proline and low ethylene evolution were detected in shoots and roots of salt tolerant cultivar. Chlorophyll a/b ratio showed an increase from 1.3 in control of both cultivars to 1.6 and 1.4 in stressed Giza 163 and Sakha 92, respectively. A reduced Hill reaction activity (19 %) was observed in stressed chloroplasts isolated from leaves of the tolerant cultivar versus 40 % inhibition in the sensitive ones. Moreover, chloroplasts isolated from stressed leaves of the sensitive cultivar showed about 25 % reduction in fluorescence emission at 685 nm as well as shifts in the peaks in the visible region.
Targeting polyamines of parasitic protozoa in chemotherapy has attracted attention because polyamines might reveal novel drug targets for antiparasite therapies (Müller et al. 2001). The biological function of the triamine spermidine in parasitic protozoa has not been studied in great detail although the results obtained mainly imply three different functions, i.e., cell proliferation, cell differentiation, and biosynthesis of macromolecules. Sequence information from the malaria genome project databases and inhibitor studies provide evidence that the current status of spermidine research has to be extended since enzymes of spermidine metabolism are present in the parasite (Kaiser et al. 2001). Isolation and characterisation of these enzymes, i.e., deoxyhypusine synthase (EC 1.1.1.249) (DHS) and homospermidine synthase (EC 2.5.1.44) (HSS) might lead to valuable new targets in drug therapy. Currently research on spermidine metabolism is based on the deposition of the deoxyhypusine synthase nucleic acid sequence in GenBank while the activity of homospermidine synthase was deduced from inhibitor studies. Spermidine biosynthesis is catalyzed by spermidine synthase (EC 2.5.1.16) which transfers an aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine. Spermidine is also an important precursor in the biosynthesis of the unusual amino acid hypusine (Wolff et al. 1995) and the uncommon triamine homospermidine in eukaryotes, in particular in pyrrolizidine alkaloid-producing plants (Ober and Hartmann 2000). Hypusine is formed by a two-step enzymatic mechanism starting with the transfer of an aminobutyl moiety from spermidine to the ε-amino group of one of the lysine residues in the precursor protein of eukaryotic initiation factor eIF5A by DHS (Lee and Park 2000). The second step of hypusinylation is completed by deoxyhypusine hydroxylase (EC 1.14.9929) (Abbruzzese et al. 1985). Homospermidine formation in eukaryotes parallels deoxyhypusine formation in the way that in an NAD+-dependent reaction an aminobutyl moiety is transferred from spermidine. In the case of homospermidine synthase, however the acceptor is putrescine. Thus the triamine homospermidine consists of two symmetric aminobutyl moieties while there is one aminobutyl and one aminopropyl moiety present in spermidine. Here, we review the metabolism of the triamine spermidine with particular focus on the biosynthesis of hypusine and homospermidine in parasitic protozoa, i.e., Plasmodium, Trypanosoma and Leishmania, compared to that in prokaryotes i.e., Escherichia coli, a phytopathogenic virus and pyrrolizidine alkaloid-producing plants (Asteraceae) and fungi.