Effíciency of the energy transformation for CO2 fixation (E), and kinetics of the initial 02-mediated electron transport of Spimlina platemis (Gom.) Geitl. and Chlorella vulgaris Beijerinck cells were measured after adaptation to various growth irradiances (7) by means of the delayed fluorescence (DF) induction curves. Maxima of the membrane potential expenses during induction period were observed at I half saturating oxygen evolution; they were shifted according to growth 1 remaining higher in Spirulina than in Chlorella. The alterations of absorbance and fluorescence spectra at 25 oC after adaptation to / demonstrated changes in composition of pigments of algae, created to compensate for the imbalance in radiation absorption between the two photosystems. For Spirulina cells, the value of E was higher after growing under low /, or under blue radiation absorbed mainly by photosystem (PS) 1 (400-500 nm) with excitation by yellow (570 nm) radiation. For Chlorella cells, it was also higher after growing under low I. Under such conditions the half-rise time for DP-phase of DF induction curve decreased, which reflected an acceleration of kinetics of the initial electron transport between photosystems. An opposite situation was observed with Spirulina cells grown under high I or yellow radiation, and Chlorella cells from high I. Enhancement of effective PS2/PS1 ratio associated with decrease of reaction centre (RC) 2/RCl stoichiometry may be a cause of the increase of E and high membrane energization under saturating I in algae adapted to low 1.
The cadmium treatment of dark-grown leaves and isolated etioplast inner membranes of wheat resulted in a decrease of the amount of the 657 nm emitting (77 K fluorescence) protochlorophyllide (PChlide) form, a simultaneous increase of the 633 nm form and the appearance of a 641.5 nm emitting form. This effect did not occur if excess NADPH was added to the isolated membranes: these samples showed spectral properties identical to those of non-treated (control) samples. Inhibition of the PChlide phototransformation was observed in the cadmium-treated leaves and membranes, the irradiation resulted in the appearance of a smáli amount of chlorophyllide (Chlide) with characteristic emission band at 678 nm. If excess NADPH was added, the inhibition did not occur and flash irradiation resulted in formation of the 694 nm Chlide form similarly as in control plants.
The activities of photosystem 2 (PS2) and whole chain electron transport declined in high temperature treated cells at the room temperature beyond 35 °C, while photosystem 1 (PS1) showed increased activity. Thylakoid membrane studies did not exhibit increase in PS1 activity indicating that the enhancement of PS1 activity is due to permeability change of cell membranes. However, the electron transport activity measured from reduced duroquinone to methylviologen which involves intersystem electron transport was extremely sensitive to high temperature. The activity of PS2 at different irradiance, which was accompanied by alterations in absorption and fluorescence emission properties, indicated changes in the energy transfer processes within phycobilisomes. Thus high temperature has multiple target sites in photosynthetic electron transport system of Spirulina platensis. and V. Venkataramanaiah, P. Sudhir, S. D. S. Murthy.
Foliar anthocyanins shape a peculiar shade in a red leaf's interior leading to uneven energy distribution between the two photosystems. Accordingly, a readjustment of PSII/PSI stoichiometry could restore excitation balance. To test this hypothesis, 77 K fluorescence emission spectra of thylakoids from green and red leaves of seven species with different pigment profiles were compared. The ratio of F686/F736 served as an indication of the PSII/PSI functional ratio. To avoid possible species-dependent differences in the measured parameters, plants showing intra-individual, intra-species, or intra-leaf variation in the expression of the anthocyanic character were used. Red leaves or red leaf areas displayed higher PSII/PSI ratio, irrespectively of species and anthocyanin accumulation pattern. PSII/PSI ratio declined in parallel with anthocyanin decrease. In five species, red leaves displayed also a lower Chl a/b ratio. We conclude that red leaves growing in full sunlight develop adaptive adjustments in their chlorophyll and photosystem ratios, compatible with the shade-acclimation syndrome.
Distinct crystalloids were found in chloroplasts of transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) overproducing endogenous cytokinins. They were present both in rooted (T) and grafted (TC) transgenic plants contrary to control tobacco (C). The fractions enriched by crystalloids were isolated from chloroplasts using a continuous or a discontinuous Percoll gradient. Chlorophyll (Chl) fluorescence emission spectra at 77 K indicated the presence of aggregates of light-harvesting complex proteins (LHC2) that was not connected to reaction centres of photosystem 2 both in isolated chloroplasts and in the fraction of 80 % Percoll gradient from both types of transgenic tobacco. Further analyses, i.e. pigment contents, polypeptide composition by SDS-PAGE, and immunoblotting support our hypothesis that crystalloids inside chloroplasts of transgenic tobacco are formed by LHC2 aggregates. Treatment with two distinct detergents, chosen with respect to their effects (i.e. β-dodecyl maltoside or Triton X-100), resulted in different degree of disintegration of Chl a/b proteins in transgenic plants compared to the control. Electron microscopic observations and immunogold labelling with specific LHC2 antibodies carried on the resin embedded leaf sections or free suspensions of chloroplasts showed that gold particles were bound preferentially on the outer surface of crystalloids. Three-dimensional reconstruction of chloroplasts and crystalloids proved that paracrystalline structures varied moderately in their size and took up a significant portion of total chloroplast volume. and H. Synková ... [et al.].
The effect of Hg++ was studied on the arrangement and photoactivity of NADPH:protochlorophyllide oxidoreductase (POR) in homogenates of dark-grown wheat (Triticum aestivum L.) leaves. 77 K fluorescence emission spectra of the homogenates were recorded before and after the irradiation of the homogenates and the spectra were deconvoluted into Gaussian components. The mercury treatment caused a precipitation of the membrane particles, which was followed by a remarkable decrease of the fluorescence yield. 10-3 M Hg++ decreased the ratio of the 655 nm-emitting protochlorophyllide (Pchlide) form to the 633 nm-emitting form. 10-2 M Hg++ shifted the short wavelength band to 629-630 nm and a 655 nm form was observed which was inactive on irradiation. This inhibition may be caused by serious alteration of the enzyme structure resulting in the trans-localisation of NADPH within the active site of POR. and K. Lenti, F. Fodor, B. Böddi.
NYB is chlorophyll-less barley mutant, which is controlled by a recessive nuclear gene. The mutation mechanism is revealed. The activities of enzymes transforming 5-aminolevulinic acid into protochlorophyllide were the same in both NYB and the wild type (WT), but the activity of the protochlorophyllide oxidoreductase (POR) in WT was much higher than that of NYB. Most of the photosystem 2 apoproteins were present in both WT and NYB, suggesting that the capability of protein synthesis was probably fully preserved in the mutant. Thus chlorophyll (Chl) biosynthesis in NYB was hampered at conversion form protochlorophyllide (Pchlide) into chlorophyllide. The open reading frame of porB gene in NYB was inserted with a 95 bp fragment, which included a stop codon. The NYB mutant is a very useful material for studies of Chl biosynthesis, chloroplast signalling, and structure of light-harvesting POR-Pchlide complex (LHPP). and Z.-L. Liu ... [et al.].
Salinised (150 mM NaCl for 15 d) roots excised from salt sensitive wheat cultivar Giza 163 showed about 15-fold increase in the ratio of Na/K while salt tolerant Sakha 92 exhibited only 7.5-fold increase compared to their control ratios. Root ratio of saturated/unsaturated fatty acids was stimulated twice in the sensitive cultivar versus 1.7-fold increase in the tolerant ones. Salinity enhanced greatly the accumulation of spermine (Spm) and spermidine (Spd) contents associated with a decrease in putrescine (Put) content in both wheat cultivars. Higher ratios of Spm+Spd/Put associated with lower content of proline and low ethylene evolution were detected in shoots and roots of salt tolerant cultivar. Chlorophyll a/b ratio showed an increase from 1.3 in control of both cultivars to 1.6 and 1.4 in stressed Giza 163 and Sakha 92, respectively. A reduced Hill reaction activity (19 %) was observed in stressed chloroplasts isolated from leaves of the tolerant cultivar versus 40 % inhibition in the sensitive ones. Moreover, chloroplasts isolated from stressed leaves of the sensitive cultivar showed about 25 % reduction in fluorescence emission at 685 nm as well as shifts in the peaks in the visible region.
Localization of protochlorophyll(ide) (Pchlide) forms and chlorophyllide (Chlide) transformation process were studied by using comparative analyses of de-convoluted 77 K fluorescence spectra of barley etioplast stroma and different membrane fractions obtained by sucrose gradient centrifugation. Non-photoactive 633 nm Pchlide form was mainly located in the envelope-prothylakoid membrane mixture while the photoactive 657 nm Pchlide was dominant pigment in the prolamellar body membrane and in the soluble etioplast fraction (stroma). When these fractions were exposed to a saturating flash, conversion of photoactive Pchlide into 697 nm Chlide was preferential in the prolamellar body and in the stroma, while the 676 nm Chlide was dominant pigment form in the envelope-prothylakoid fraction. These spectral characteristics are considered to reflect molecular composition and organization of the pigment-protein complexes specific for each etioplast compartment. and D. Kovacevic, D. Dewez, R. Popovic.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs. and M. Drábková ... [et al.].