Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol-1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3., L. Zhang, L. L. Jia, J. X. Sui, M. X. Wen, Y. J. Chen., and Obsahuje bibliografii
Ozone (O3) is important air pollutant inducing severe losses of horticultural production. Cultivars of the same species, but with different leaf colors, may differ in their ozone sensitivity. However, it has not been clarified yet if different leaf coloration influences such a sensitivity. In this study, two purple-leafed and two green-leafed cultivars of Pakchoi were selected for ozone fumigation (240 ± 20 nmol mol-1, 09:00-16:00 h). Elevated O₃ decreased chlorophyll content, increased anthocyanin (Ant) content, damaged cell membrane integrity, enhanced antioxidative enzyme activities, depressed photosynthetic rate (PN) and stomatal conductance (gs), inhibited maximal quantum yield (Fv/Fm) and effective quantum yield [YII] of PSII photochemistry, and caused visible injury. Purple-leafed cultivars with higher Ant contents were more tolerant than green-leafed cultivars as indicated by lower relative enhancement in malondialdehyde content and lower relative losses in PN, gs, Fv/Fm, and YII. The higher ability to synthesize Ant in the purple-leafed cultivars contributed to their higher photoprotective ability., L. Zhang, S. Xiao, Y. J. Chen, H. Xu, Y. G. Li, Y. W. Zhang, F. S. Luan., and Obsahuje bibliografii
Low temperature (LT) is one of the major factors that limit crop production and reduce yield. To better understand the cold-tolerance mechanism in the plantains, a sensitive cultivar Williams (Musa acuminata AAA cv. Williams) and a tolerant cultivar Cachaco (Musa paradisiaca ABB cv. Dajiao) were used. LT resulted in increased malondialdehyde (MDA) content, elevated contents of hydrogen peroxide (H2O2) and superoxide radical (O2.-), and decreased photochemical efficiency (Fv/Fm) and net photosynthetic rate (PN), but cv. Cachaco showed better LT tolerance than cv. Williams. After LT treatment for 120 h, total scavenging capability (DPPH. scavenging capability) in Williams showed a significant decrease but no significant alternations was found in Cachaco. Ascorbate peroxidase (APX) and peroxidase (POD) displayed a significant increase but superoxide dismutase (SOD) showed no significant alternations and catalase (CAT) showed a significant decrease in Cachaco after 120 h of LT treatment. All the four antioxidant enzymes above showed a significant decrease in Williams after 120 h of LT treatment. Our results suggest that higher activities of APX, POD, SOD, and DPPH. scavenging capability to a certain extent can be used to explain the higher cold tolerance in the plantain, which would provide a theoretical guidance for bananas production and screening cold-resistant variety. and Q. Zhang ... [et al.].