The fine structure is described of the merogonic stages and gametocytes of a Plasmodium tropiduri Aragão et Neiva, 1909-like parasite infecting the teiid lizard Kentropyx calcarata Spix from North Brazil. The trophozoites are bordered by two membranes, and with growth a pellicle is formed by the addition of an inner, thick double layer and fragmented membrane. The same type of inner membrane occurs in the pellicle of the merozoites differentiating from the meronts. Merozoites contained a large electron-dense body, sometimes seen to be embraced by a tubular mitochondrion with a dense matrix. Micro- and macrogametocytes are bounded by a double membrane, closely apposed by the detached wall of the parasitophorous vacuole. Both contain osmiophilic bodies. The microgametocyte contains an electron-dense aggregate, and the macrogametocyte has a large mitochondrion and a complex of tubuli and cisternae. These features are compared with those described in other malarial parasites.
Avian haemosporidians are common vector-borne blood parasites that have been reported in birds all over the world. Investigations of avian haemosporidian parasites are conducted mainly on passerine birds. However, studies that focus on non-passerine avian hosts are important for our understanding of the true diversity, host specificity and genetic variability among these widespread parasites. In the present study, blood samples from a total of 22 raptor birds belonging to two orders, two families and six species from the Central Anatolia Region of Turkey were investigated for three genera of avian haemosporidians (Plasmodium Marchiafava et Celli, 1885, Haemoproteus Kruse, 1890 and Leucocytozoon Sambon, 1908) using a combination of microscopic examination of blood films and nested PCR targeting the parasite mitochondrial cytochrome b gene (cyt-b). In total, six individual raptor birds identified positive for species of Plasmodium or Leucocytozoon and one individual was found co-infected with all three haemosporidian genera. We identified five parasite cyt-b haplotypes, three of which were reported for the first time. Among these, one Plasmodium haplotype is linked to a corresponding morphospecies (P-TURDUS1, Plasmodium circumflexum Kikuth, 1931). All haplotypes were clearly distinguishable in phylogenetic analyses. As one of the first studies to investigate blood parasites from non-passerine birds in the Central Anatolia Region of Turkey, this study provides important new information on the phylogenetic relationships and genetic diversity of avian haemosporidian parasites from raptor birds. We discuss these findings in the context of avian haemosporidian host-parasite relationships and we draw attention to the need for microscopy to detect parasite sexual development stages in surveys of avian haemosporidians., Arif Ciloglu, Alparslan Yildirim, Onder Duzlu, Zuhal Onder, Zafer Dogan, Abdullah Inci., and Obsahuje bibliografii
Recently, malaria is remain considered as the most prevalent infectious disease, affecting the human health globally. High morbidity and mortality worldwide is often allied with cerebral malaria (CM) based disorders of the central nervous system, especially across many tropical and sub-tropical regions. These disorders are characterised by the infection of Plasmodium species, which leads to acute or chronic neurological disorders, even after having active/effective antimalarial drugs. Furthermore, even during the treatment, individual remain sensitive for neurological impairments in the form of decrease blood flow and vascular obstruction in brain including many more other changes. This review briefly explains and update on the epidemiology, burden of disease, pathogenesis and role of CM in neurological disorders with behaviour and function in mouse and human models. Moreover, the social stigma, which plays an important role in neurological disorders and a factor for assessing CM, is also discussed in this review., Arif Jamal Siddiqui, Mohd Adnan, Sadaf Jahan, Whitni Redman, Mohd Saeed and Mitesh Patel., and Obsahuje bibliografii
Targeting polyamines of parasitic protozoa in chemotherapy has attracted attention because polyamines might reveal novel drug targets for antiparasite therapies (Müller et al. 2001). The biological function of the triamine spermidine in parasitic protozoa has not been studied in great detail although the results obtained mainly imply three different functions, i.e., cell proliferation, cell differentiation, and biosynthesis of macromolecules. Sequence information from the malaria genome project databases and inhibitor studies provide evidence that the current status of spermidine research has to be extended since enzymes of spermidine metabolism are present in the parasite (Kaiser et al. 2001). Isolation and characterisation of these enzymes, i.e., deoxyhypusine synthase (EC 1.1.1.249) (DHS) and homospermidine synthase (EC 2.5.1.44) (HSS) might lead to valuable new targets in drug therapy. Currently research on spermidine metabolism is based on the deposition of the deoxyhypusine synthase nucleic acid sequence in GenBank while the activity of homospermidine synthase was deduced from inhibitor studies. Spermidine biosynthesis is catalyzed by spermidine synthase (EC 2.5.1.16) which transfers an aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine. Spermidine is also an important precursor in the biosynthesis of the unusual amino acid hypusine (Wolff et al. 1995) and the uncommon triamine homospermidine in eukaryotes, in particular in pyrrolizidine alkaloid-producing plants (Ober and Hartmann 2000). Hypusine is formed by a two-step enzymatic mechanism starting with the transfer of an aminobutyl moiety from spermidine to the ε-amino group of one of the lysine residues in the precursor protein of eukaryotic initiation factor eIF5A by DHS (Lee and Park 2000). The second step of hypusinylation is completed by deoxyhypusine hydroxylase (EC 1.14.9929) (Abbruzzese et al. 1985). Homospermidine formation in eukaryotes parallels deoxyhypusine formation in the way that in an NAD+-dependent reaction an aminobutyl moiety is transferred from spermidine. In the case of homospermidine synthase, however the acceptor is putrescine. Thus the triamine homospermidine consists of two symmetric aminobutyl moieties while there is one aminobutyl and one aminopropyl moiety present in spermidine. Here, we review the metabolism of the triamine spermidine with particular focus on the biosynthesis of hypusine and homospermidine in parasitic protozoa, i.e., Plasmodium, Trypanosoma and Leishmania, compared to that in prokaryotes i.e., Escherichia coli, a phytopathogenic virus and pyrrolizidine alkaloid-producing plants (Asteraceae) and fungi.