The effects of water deficit and re-irrigation were studied in glasshouse-grown rice plants (cvs. Cimarrón and Fonaiap 2000) which differ in their susceptibility to water deficit. Relative water content decreased from >90 to 67-69 % and recovered to pre-stress values within 24 h after re-irrigation. The irradiance-saturated rate of photosynthesis (Psat), transpiration rate (E), and stomatal conductance (gs) decreased with water deficit. E and gs decreased similarly in both cultivars, but Psat was more strongly inhibited in Cimarrón than in Fonaiap 2000. Water deficit increased water use efficiency (WUET) over 2-fold in Fonaiap 2000 and by 1.5-fold in Cimarrón. The ratio of intercellular to ambient CO2 concentration (Ci/Ca) decreased in Fonaiap 2000 during mild stress but increased at severe stress. Contrarily, Cimarrón did not change Ci/Ca with water deficit. After re-irrigation Fonaiap 2000 recovered Psat to ca. 80 % of control values 24 h after re-irrigation, whereas Cimarrón recovered to 60 % of control values 48 h after re-irrigation. E and gs recovered to a lesser extent (50 %) than
Psat, after 48 h of re-irrigation in both cultivars. Total aboveground and green (live) biomass were unaffected by water deficit in Fonaiap 2000 but were reduced by 21 and 40 % in Cimarrón, respectively. Dead biomass increased in stressed plants of both cultivars but to a larger extent in Cimarrón than in Fonaiap 2000. Water deficit increased δ13C in Fonaiap 2000, whereas Cimarrón was unaffected by water deficit showing lower values than those of Fonaiap 2000. δ13C was highly and linearly correlated to the ratio
Ci/Ca. WUET was also significantly correlated to δ13C. and A. J. Pieters, M. Núñez.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (PN), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems. and D. H. Xu ... [et al.].
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].
Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from the low (LA) and high (HA) altitudinal regions were employed to evaluate the plant physiological responses to solar UV-A radiation and near-ambient UV-B radiation (UV-B+A) under the sheltered frames with different solar ultraviolet radiation transmittance. LA-population was more responsive to solar UV-A. Some modification caused by UV-A only existed in LA-population, such as significant reduction of leaf size, relative water content, and chlorophyll (Chl) b content as well as δ13C elevation, coupled with larger increase of contents of total carotenoids (Cars). This higher responsiveness might be an effective pre-acclimation strategy adapting for concomitant solar UV-B stress. Near-ambient UV-B+A radiation caused significant reduction of leaf size and Chl content as well as slight down-regulation of photosystem 2 activity that paralleled with higher heat dissipation, while photosynthetic rate was modestly but significantly increased. The higher photosynthesis under near-ambient UV-B+A radiation could be related to pronounced increase of leaf thickness and effective physiological modification, like the increase of leaf protective pigments (Cars and UV-absorbing compound), constant high photochemical capacity, and improved water economy. and Y. Q. Yang, Y. Yao.
Since 2002, Silver buffaloberry (Shepherdia argentea) has been introduced from North America in order to improve the fragile ecological environment in western China. To elucidate the
salt-resistance mechanism of S. argentea, we conducted a test with two-year-old seedlings subjected to 0, 200, 400, and 600 mM NaCl solutions for 30 d. The results showed that significant salt-induced suppression of plant fresh mass (FM) and stem height of S. argentea seedlings occurred only at the highest salinity level (600 mM). Leaf number, plant dry mass (DM), and chlorophyll (Chl) content declined markedly at both 400 and 600 mM. Leaf area (LA) and leaf water potential (Ψw) continuously declined with the increase of salinity. There was also a progressive and evident decrease in net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) with the increase of salinity and time. The correlation analysis indicated that PN was positively correlated with gs at all salinity levels while correlated with intercellular CO2 concentration (Ci) only at moderate salinity levels (<600 mM). Based on the initial slope of the PN/Ci curves, the estimated carboxylation efficiency (CE) was strongly inhibited at 600 mM. We confirm that S. argentea is highly tolerant to salinity. Moreover, our results show that at moderate salinity levels, salt-induced inhibition of photosynthesis is mainly attributed to the stomatal efficient closure predetermined by a low water potential in leaves; while at the high salinity levels, the inhibition is mainly due to the suppression of chloroplast capacity to fix CO2 caused by the serious decline in both CE and Chl contents. and J. Qin ... [et al.].
Measurements of reflectance in visible and near-infrared spectral regions were made on detached leaves of two crop species of different leaf morphology, structure, and water content (peanut and wheat) throughout progressive desiccation. Relative water content (RWC) was well correlated with water index (WI) but even better with the ratio of WI and normalized difference vegetation index. RWC was also significantly correlated with structural independent pigment index indicative of carotenoids/chlorophyll ratio. New indication is thus provided to assess leaf water content and apply simple and fast radiometric techniques for plant water stress management. and J. Peñuelas, Y. Inoue.
10-5 M methyl jasmonate (JA-Me) treatment itself did not considerably change the 14CO2 fixation, parameters of room temperature chlorophyll fluorescence induction, proline content, and Na+ as well as Cl- accumulation. Salt stress (30 mM NaCl) lead to a decrease of both 14CO2 fixation and relative water content, and to an increase of proline content. Immediate nonvariable fluorescence (F0) also increased and the variable to maximal fluorescence ratio (Fv/Fm) decreased. Pretreatment with JA-Me for 3 d before salt treatment diminished the inhibitory effect of NaCl on the rate of 14CO2 fixation, protein content, and activity and content of ribulose-1,5-bisophosphate carboxylase/oxygenase. The Na+ and Cl- contents in leaves decreased in JA-Me pretreated plants. The JA-Me pretreatment prevented the increase of F0 level and restored the values of Fv/Fm. and M. Velitchkova, I. Fedina.
Photochemical efficiency of photosystem 2 (PS2), assessed from in situ chlorophyll (Chl) fluorescence measurements, was seasonally monitored in five evergreen sclerophyll and five malacophyllous drought semi-deciduous species, co-occurring in the same Mediterranean field site. In evergreen sclerophylls, a considerable drop in the variable (Fv) to maximum (Fm) Chl fluorescence ratio coincided with the lowest winter temperatures, indicating low PS2 efficiency during this period. Summer drought caused a comparatively slight decrease in Fv/Fm and only in three of the five evergreen sclerophyll species tested. In drought semi-deciduous shrubs, the winter drop in Fv/Fm was much less conspicuous. During the summer, and in spite of the severe and prolonged desiccation of their malacophyllous leaves, Fv/Fm was maintained high and only in one species the PS2 efficiency was transiently suppressed, when the leaf relative water content became lower than 30 %. Thus evergreen sclerophylls are more prone to photoinhibition by low winter temperatures, while the sensitivity of drought semi-deciduals depends on the extent and duration of summer drought. and S. Karavatas, Y. Manetas.
Water-withholding for 5 to 7 weeks and subsequent re-watering were made on potted plants of two epiphytic (E) and two terrestrial (T) fern species, which were collected from a seasonal tropical rainforest and had been grown in a screenhouse with 5 % irradiance for 4 months. During the water stress, the two E species completely closed stomata when frond relative water content (RWC) reached about 70 % with fairly constant maximum photochemistry efficiency (Fv/Fm), while the two T species kept partial stomata opening until RWC reached 45 % and reduction in Fv/Fm at the late stage. Also, chlorophyll content as indicated by a spectral reflectance index was gradually reduced in three species. Physiological recovery was completed after 3-d re-watering for the E species, which was more rapid than for the T species. The gas exchange measurements and regression analyses indicated higher photosynthetic water use efficiency in the E species than in the T species. and Q. Zhang ... [et al.].
The photosynthetic parameters in leaves of three-year-old seedlings of Fraxinus rhynchophylla L. were studied under different soil water conditions and CO2 concentrations ([CO2]) with a
LI-COR 6400 portable photosynthesis system. The objective was to investigate the response of photosynthesis and stomatal conductance (gs) to various [CO2] and soil water conditions, and to understand the adaptability of F. rhynchophylla to such conditions. The results showed that the soil water content (RWC) required to maintain high photosynthetic productivity in F. rhynchophylla was 49.5-84.3%; in this range, net photosynthetic rate (PN) rose with [CO2] increasing from 500 to 1,400 μmol mol-1. Outside this RWC range, PN decreased significantly. The apparent maximum photosynthetic rate (Pmax,c) and carboxylation velocity (Vc) increased with increasing RWC and remained relatively high, when RWC was between 49.5 and 96.2%. CO2 compensation points and photorespiration rate exhibited a trend opposite to that of Pmax,c and Vc, indicating that moderate water stress was beneficial for increasing plant assimilation, decreasing photorespiration, and increasing production of photosynthates. gs declined significantly with increasing [CO2] under different water supplies, but the RWC range maintaining high gs increased. gs reached its maximum, when RWC was approximately 73% and then decreased with declining RWC. The maximal gs was found with increasing RWC. Thus, based on photosynthetic characteristics in artificial, vegetation construction in semiarid loess hill and gully area, F. rhynchophylla could be planted in habitats of low soil water content. and S. Y. Zhang ... [et al.].