The effect of high temperature (HT) and dehydration on the activity of photosynthetic apparatus and its ability to restore membrane properties, oxygen evolution, and energy distribution upon rehydration were investigated in a resurrection plant, Haberlea rhodopensis. Plants growing under low irradiance in their natural habitat were desiccated to air-dry state at a similar light intensity [about 30 μol(photon) m-2 s-1] under optimal day/night (23/20°C) or high (38/30°C) temperature. Our results showed that HT alone reduced the photosynthetic activity and desiccation of plants at 38°C and it had more detrimental effect compared with desiccation at 23°C. The study on isolated thylakoids demonstrated increased distribution of excitation energy to PSI as a result of the HT treatment, which was enhanced upon the desiccation. It could be related to partial destacking of thylakoid membranes, which was confirmed by electron microscopy data. In addition, the surface charge density of thylakoid membranes isolated from plants desiccated at 38°C was higher in comparison with those at 23°C, which was in agreement with the decreased membrane stacking. Dehydration led to a decrease of amplitudes of oxygen yields and to a loss of the oscillation pattern. Following rehydration, the recovery of CO2 assimilation and fluorescence properties were better when desiccation was performed at optimal temperature compared to high temperature. Rehydration resulted in partial recovery of the amplitudes of flash oxygen yields as well as of population of S0 state in plants desiccated at 23°C. However, it was not observed in plants dehydrated at 38°C. and M. Velitchkova ... [et al.].
The acclimation to high light, elevated temperature, and combination of both factors was evaluated in tomato (Solanum lycopersicum cv. M82) by determination of photochemical activities of PSI and PSII and by analyzing 77 K fluorescence of isolated thylakoid membranes. Developed plants were exposed for six days to different combinations of temperature and light intensity followed by five days of a recovery period. Photochemical activities of both photosystems showed different sensitivity towards the heat treatment in dependence on light intensity. Elevated temperature exhibited more negative impact on PSII activity, while PSI was slightly stimulated. Analysis of 77 K fluorescence emission and excitation spectra showed alterations in the energy distribution between both photosystems indicating alterations in light-harvesting complexes. Light intensity affected the antenna complexes of both photosystems stronger than temperature. Our results demonstrated that simultaneous action of high-light intensity and high temperature promoted the acclimation of tomato plants regarding the activity of both photosystems in thylakoid membranes., A. Faik, A. V. Popova, M. Velitchkova., and Obsahuje bibliografii
Haberlea rhodopensis Friv. is unique with its ability to survive desiccation to an air-dry state during periods of extreme drought and freezing temperatures. To understand its survival strategies, it is important to examine the protective mechanisms not only during desiccation but also during rehydration. We investigated the involvement of alternative cyclic electron pathways during the recovery of photosynthetic functions after freezing-induced desiccation. Using electron transport inhibitors, the role of PGR5-dependent and NDH-dependent PSI-cyclic electron flows and plastid terminal oxidase were assessed during rehydration of desiccated leaves. Recovery of PSII and PSI, the capacity of PSI-driven cyclic electron flow, the redox state of plastoquinone pool, and the intersystem electron pool were analyzed. Data showed that the effect of alternative flows is more pronounced in the first hours of rehydration. In addition, the NDH-dependent cyclic pathway played a more determining role in the recovery of PSI than in the recovery of PSII.
10-5 M methyl jasmonate (JA-Me) treatment itself did not considerably change the 14CO2 fixation, parameters of room temperature chlorophyll fluorescence induction, proline content, and Na+ as well as Cl- accumulation. Salt stress (30 mM NaCl) lead to a decrease of both 14CO2 fixation and relative water content, and to an increase of proline content. Immediate nonvariable fluorescence (F0) also increased and the variable to maximal fluorescence ratio (Fv/Fm) decreased. Pretreatment with JA-Me for 3 d before salt treatment diminished the inhibitory effect of NaCl on the rate of 14CO2 fixation, protein content, and activity and content of ribulose-1,5-bisophosphate carboxylase/oxygenase. The Na+ and Cl- contents in leaves decreased in JA-Me pretreated plants. The JA-Me pretreatment prevented the increase of F0 level and restored the values of Fv/Fm. and M. Velitchkova, I. Fedina.