Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase -mediated superoxide (O 2 - ) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren -2 renin gene (Ren -2 TGR) and their age -matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD) . We found no difference in the activity of NADPH oxidase measured as a lucigenin -mediated O 2 - production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren -2 TGR com pared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren -2 TGR+LOS) did not change NADPH oxidase -dependent O 2 - production in the kidney. We detected significantly elevated indirect m arkers of lipid peroxidation measured as th iobarbituric acid -reactive substance s (TBARS) in Ren -2 TGR, while they were significantly decreased in Ren -2 TGR +LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions., M. Vokurková, H. Rauchová, L. Řezáčová, I. Vaněčková, J. Zicha., and Obsahuje bibliografii
The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition., S. B. Pajović, M. B. Radojčić, D. T. Kanazir., and Obsahuje bibliografii a bibliografické odkazy
Excessive production of reactive oxygen species (ROS) are implicated in the pathogenesis of numerous disease states. However, direct measurement of in vivo ROS in humans has remained elusive due to limited access to appropriate tissue beds and the inherently short half-lives and high reactivity of ROS. Herein, we describe a novel technique by which to measure in vivo ROS in human skeletal muscle. Microdialysis probes were inserted into the vastus lateralis of eight healthy volunteers. Amplex Ultrared, a highly specific fluorogenic substrate for hydrogen peroxide (H2O2), and horseradish peroxidase (HRP), were perfused through microdialysis probes, and outflowing dialysate was collected and fluorescence was measured. Extracellular H2O2 that crossed the microdialysis membrane was measured via fluorescence of the dialysate. Superoxide dismutase (SOD) was then added to the inflowing perfusion media to convert any superoxide crossing the microdialysis membrane to H2O2 within the microdialysis probe. Fluorescence significantly increased (P=0.005) upon SOD addition. These data demonstrate the feasibility of measuring both in vivo H2O2 and superoxide in the extracellular environment of human skeletal muscle, providing a technique with a potential application to a wide range of circulatory and metabolic studies of oxidative stress., J. D. La Favor, E. J. Anderson, R. C. Hickner., and Obsahuje bibliografii
The oxidative stress plays an important role in the development of cardiovascular diseases (CVD). In CVD progression an aberrant redox regulation was observed. In this regulation levels of reactive oxygen species (ROS) play an important role in cellular signaling, where Nrf2 is the key regulator of redox homeostasis. Keap1-Nrf2-ARE system regulates a great set of detoxificant and antioxidant enzymes in cells after ROS and electrophiles exposure. In this review we focus on radical-generating systems in cardiovascular system as well as on Nrf2 as a target against oxidative stress and a key player of redox regulation in cardiovascular diseases. We also summarize the current knowledge about the role of Nrf2 in pathophysiology of several CVD (hypertension, cardiac hypertrophy, cardiomyopathies) as well as in cardioprotection against myocardial ischemia/ reperfusion injury., M. Barančík, L. Grešová, M. Barteková, I. Dovinová., and Obsahuje bibliografii
In this study we analyzed the effects of melatonin (Mel, 1 mg/kg ip) on behavioral changes as well as cell and oxidative damage prompted by bilaterally olfactory bulbectomy. Olfactory bulbectomy caused an increase in lipid peroxidation products and caspase-3, whereas it prompted a decrease of reduced glutathione (GSH) content and antioxidative enzymes activities. Additionally, olfactory bulbectomy induced behavioral changes characterized by the enhancement of immobility time in the forced swim test and hyperactivity in the open field test. All these changes were normalized by treatment of Mel (14 days). Our data show that Mel has a beneficial neuropsychiatric action against oxidative stress, cell damage and behavior alterations., I. Tasset ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Oxidative stress is a phenomenon associated with imbalance between production of free radicals and reactive metabolites (e.g. superoxide and hydrogen peroxide) and the antioxidant defences. Oxidative stress in individuals with Down syndrome (DS) has been associated with trisomy of the 21st chromosome resulting in DS phenotype as well as with various morphological abnormalities, immune disorders, intellectual disability, premature aging and other biochemical abnormalities. Trisomy 21 in patients with DS results in increased activity of an important antioxidant enzyme Cu/Zn superoxide dismutase (SOD) which gene is located on the 21st chromosome along with other proteins such as transcription factor Ets-2, stress inducing factors (DSCR1) and precursor of beta-amyloid protein responsible for the formation of amyloid plaques in Alzheimer disease. Mentioned proteins are involved in the management of mitochondrial function, thereby promoting mitochondrial theory of aging also in people with DS. In defence against toxic effects of free radicals and their metabolites organism has built antioxidant defence systems. Their lack and reduced function increases oxidative stress resulting in disruption of the structure of important biomolecules, such as proteins, lipids and nucleic acids. This leads to their dysfunctions affecting pathophysiology of organs and the whole organism. This paper examines the impact of antioxidant interventions as well as positive effect of physical exercise on cognitive and learning disabilities of individuals with DS. Potential terapeutic targets on the molecular level (oxidative stress markers, gene for DYRK1A, neutrophic factor BDNF) after intervention of natural polyphenols are also discussed., J. Muchová, I Žitňanová, Z. Ďuračková., and Obsahuje bibliografii
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2 nd postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognit ive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N- methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl- isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats., J. Folbergrová., and Obsahuje bibliografii a bibliografické odkazy
Several pre-clinical and clinical studies have demonstrated zoledronic acid (Zol), which regulates the mevalonate pathway, has efficient anti-cancer effects. Zol can also induce autophagy. The aim of this study is to add new understanding to the mechanism of autophagy induction by Zol. LC3B-II, the marker for autophagy was increased by Zol treatment in breast cancer cells. Autophagosomes induced by Zol were visualized and quantified in both transient (pDendra2-hLC3) and stable MCF-7- GFP-LC3 cell lines. Acidic vesicular organelles were quantified using acridine orange. Zol induced a dose and time dependent autophagy. Treatment of Zol increased oxidative stress in MCF-7 cells, which was reversed by GGOH or anti-oxidants. On the other hand, treatment with GGOH or anti-oxidants resulted in decreased levels of LC3B-II. Further, the induced autophagy was irreversible, as the washout of Zol after 2 h or 24 h resulted in similar levels of autophagy, as induced by continuous treatment after 72 h. Thus, it can be summarized that Zol can induce a dose dependent but irreversible autophagy, by its effect on the mevalonate pathway and oxidative stress. This study adds to the understanding of the mechanism of action of Zol, and that it can induce autophagy at clinically relevant shorter exposure times in cancer cells., V. K. M. Khandelwal, L. M. Mitrofan, J. M. T. Hyttinen, K. R. Chaudhari, R. Buccione, K. Kaarniranta, T. Ravingerová, J. Mönkkönen., and Obsahuje bibliografii
Recent studies demonstrated remote effects of renal ischemia/reperfusion (I/R) injury on some organs such as brain, liver, and lungs. We investigated the effects of renal I-R injury on function, histology and oxidative stress state of pancreas. Twenty -four male adult Sprague-Dawley rats were divided equally into 2 groups; sham group: rats underwent midline laparotomy and dissection of renal pedicles without renal ischemia, and ischemic group: rats underwent bilateral renal ischemia for 45 min. Renal functions (serum creatinine and BUN), pancreatic functions (serum amylase, lipase and insulin) and fasting blood glucose were measured at 2 h, 1 day, 3 days and 7 days after ischemia. Also, pancreatic histology and malondialdehyde (MDA), catalase and reduced glutathione (GSH) were examined at 2 h and 7 days after ischemia. The ischemic rats showed significant increase in serum creatinine and BUN with significant increase in serum amylase and lipase at 2 h, 1 day and 3 days after ischemia. Blood glucose and fasting insulin showed no significant change apart from significant increase in insulin in sham group at 1 day after ischemia. Pancreas isolated from ischemic rats showed significant increase in histopathological damage score and significant increase in MDA and catalase enzyme with decrease in GSH. In conclusion, bilateral renal ischemia for 45 min caused significant impairment of pancreatic functions and histology. This might be due to deficiency of antioxidant and increased lipid peroxidations in pancreatic tissues., A. M. Hussein ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy