During shock, prognosis of a patient depends largely on intestinal barrier function. The potency of gut epithelium to represent an obstacle to toxins is determined by the blood supply. All established methods of mucosal function determination necessitate the functional involvement of bloodstream. Microdialysis allows monitoring of extracellular substances in the gut submucosa, but its potential use for gut barrier integrity assessment is unknown. Twelve rats underwent perfusion of the descending colon either with 20 % ethanol or control medium (vehicle). Both media contained equal amounts of a radioactive tracer substance (51Cr-EDTA). Mucosal permeability for 51Cr-EDTA was assessed by microdialysate to luminal perfusate activity ratios. Sampling was performed using the colon submucosal microdialysis technique. The group subjected to ethanol treatment had profound macro- and microscopical alterations in perfused colonic segment associated with a significant increase in tracer permeability during ethanol exposure (2.354±0.298 % for ethanol as opposed to 0.209±0.102 % for control group, p<0.01), which remained elevated for 60 min after cessation of ethanol administration (3.352±0.188 % for ethanol compared to 0.140± 0.0838 % for the control group, p<0.001). Submucosal microdialysis with radioactive tracer substance can be considered a feasible and advantageous alternative of gut barrier function estimation. Parallel monitoring of local tissue chemistry with this method remains a challenge in the future., N. Cibiček, H. Živná, Z. Zadák, J. Kulíř, E. Čermáková, V. Palička., and Obsahuje bibliografii a bibliografické odkazy
Hippocampus is a brain structure containing vasopressin (AVP) fibers and specific binding sites for this peptide. There is growing evidence that AVP and its metabolites participate in glutamate-mediated plasticity of the hippocampus. The aim of the present study was to evaluate the influence of NMDA on AVP release in the rabbit hippocampus. Caudate nucleus was chosen as the reference structure. The mentioned brain structures were simultaneously microdialyzed with 0.9 % NaCl solution. AVP was determined in the outflowing fluid by radioimmunoassay. The mean basal AVP content in the fluid outflowing from the hippocampus was significantly greater than that from the caudate nucleus. The addition of K+ into the fluid perfusing the probes implanted into the hippocampus and caudate nucleus significantly increased AVP release into the extracellular fluid of both brain structures. NMDA applied into the mentioned brain structures increased AVP release only from the hippocampus but not from the caudate nucleus. Our findings indicate a role which NMDA receptors play in AVP release into the extracellular fluid of the hippocampus., M. Orłowska-Majdak, W. Z. Traczyk, D. Szymański., and Obsahuje bibliografii
During controlled ischaemia (aortal snare occlusion) of the lumbar spinal cord, microcirculatory (laser-Doppler flowmetry) and segmental neurophysiological parameters (monosynaptic reflexes, polysynaptic reflexes, cord dorsum potential = CDP) as well as interstitial concentrations of adenosine and serotonin (5-HT) were determined in the grey matter using the microdialysis/HPLC method. Ischaemic periods of 1-7 min with a residual blood flow in the lumbar spinal cord of 10-30 % of the preischaemic control blood flow caused a blockade of spinal pathways and an increase of concentrations of interstitial adenosine and 5-HT. This increase started immediately after the initiation of the ischaemic period and reached a maximum at the end or shortly after the end of the ischaemic period during postischaemic hyperaemia. A close correlation between the duration of ischaemia and the interstitial concentration of adenosine and 5-HT was not found. Repetition of ischaemic periods in an experiment did not lead to an extracellular accumulation or an exhaustion of the release of 5-HT, whereas some indication was found for an exhaustion of adenosine release. The course of the increase of interstitial adenosine and 5-HT was partly found to correlate to the loss and recovery of the CDP following ischaemia. The concentrations usually reached control levels before spinal reflexes reappeared. The highly dynamic changes in concentrations of adenosine and 5-HT in the extracellular space of the spinal cord during and after short-term ischaemia revealed some relation to the time course of recovery of segmental spinal functions by reflecting the course of spinal neuronal metabolism.
Excessive production of reactive oxygen species (ROS) are implicated in the pathogenesis of numerous disease states. However, direct measurement of in vivo ROS in humans has remained elusive due to limited access to appropriate tissue beds and the inherently short half-lives and high reactivity of ROS. Herein, we describe a novel technique by which to measure in vivo ROS in human skeletal muscle. Microdialysis probes were inserted into the vastus lateralis of eight healthy volunteers. Amplex Ultrared, a highly specific fluorogenic substrate for hydrogen peroxide (H2O2), and horseradish peroxidase (HRP), were perfused through microdialysis probes, and outflowing dialysate was collected and fluorescence was measured. Extracellular H2O2 that crossed the microdialysis membrane was measured via fluorescence of the dialysate. Superoxide dismutase (SOD) was then added to the inflowing perfusion media to convert any superoxide crossing the microdialysis membrane to H2O2 within the microdialysis probe. Fluorescence significantly increased (P=0.005) upon SOD addition. These data demonstrate the feasibility of measuring both in vivo H2O2 and superoxide in the extracellular environment of human skeletal muscle, providing a technique with a potential application to a wide range of circulatory and metabolic studies of oxidative stress., J. D. La Favor, E. J. Anderson, R. C. Hickner., and Obsahuje bibliografii