Triiodothyronine administration before partial hepatectomy increased the activity of mitochondrial glycerophosphate cytochrome c reductase. The enzyme activity was further activated after partial hepatectomy during the regenerative process. Our findings showed that: a) the increase of glycerophosphate cytochrome c reductase induced by triiodothyronine was further potentiated by the regeneration process, b) the high activity of the glycerophosphate shuttle was maintained after partial hepatectomy during the period, when most of the liver tissue had again been recovered., H. Lotková, H. Rauchová, Z. Drahota., and Obsahuje bibliografii
a1_Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension – salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of reninangiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the saltsensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake., a2_On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals., J. Zicha, ... [et al.]., and Obsahuje seznam literatury
a1_In this study we compared several parameters characterizing differences in the lipoprotein profile between members of families with a positive or negative family history of coronary artery disease (CAD). In addition to regular parameters such as the body mass index (BMI), total plasma cholesterol (TC), low density (LDL-C) and high density (HDL-C) cholesterol and triglycerides (TG) we estimated the fractional esterification rate of cholesterol in apoB lipoprotein-depleted plasma (FERHDL) which reflects HDL and LDL particle size distribution. A prevalence of smaller particles for the atherogenic profile of plasma lipoproteins is typical. Log (TG/HDL-C) as a newly established atherogenic index of plasma (AIP) was calculated and correlated with other parameters. The cohort in the study consisted of 29 young (< 54 years old) male survivors of myocardial infarction (MI), their spouses and at least one offspring (MI group; n=116). The control group consisted of 29 apparently healthy men with no family history of premature CAD in three generations, their spouses and at least one offspring (control group; n=124). MI families had significantly higher BMI than the controls, with the exception of spouses. Plasma TC did not significantly differ between MI and the controls. MI spouses had significantly higher TG. Higher LDL-C had MI survivors only, while lower HDL-C had both MI survivors and their spouses compared to the controls. FERHDL was significantly higher in all the MI subgroups (probands 25.85±1.22, spouses 21.55±2.05, their daughters 16.93±1.18 and sons 19.05±1.33 %/h) compared to their respective controls (men 20.80±1.52, spouses 14.70±0.98, daughters 13.23±0.74, sons 15.7±0.76 %/h, p<0.01 to p<0.05). Log (TG/HDL-C) ranged from negative values in control subjects to positive values in MI probands., a2_High correlation between FERHDL and Log (TG/HDL-C) (r = 0.80, p<0.0001) confirmed close interactions among TG, HDL-C and cholesterol esterification rate. The finding of significantly higher values of FERHDL and Log (TG/HDL-C) indicate higher incidence of atherogenic lipoprotein phenotype in members of MI families. The possibility that, in addition to genetic factors, a shared environment likely contributes to the familial aggregation of CAD risk factors is supported by a significant correlation of the FERHDL values within spousal pairs (control pairs: r = 0.51 p<0.01, MI pairs: r = 0.41 p<0.05)., M. Dobiášová, K. Rašlová,H. Rauchová, B. Vohnout, K. Ptáčková, J. Frohlich., and Obsahuje bibliografii
Thyroid hormones are powerful modulators of heart function and susceptibility to arrhythmias via both genomic and non-genomic actions. We aimed to explore expression of electrical coupling protein connexin-43 (Cx43) in the heart of rats with altered thyroid status and impact of omega-3 polyunsaturated fatty acids (omega-3) supplementation. Adult male Lewis rats were divided into following six groups: euthyroid controls, hyperthyroid (treated with T3) and hypothyroid (treated with methimazol) with or without six-weeks lasting supplementation with omega-3 (20 mg/100 g/day). Left and right ventricles, septum and atria were used for immunoblotting of Cx43 and protein kinase C (PKC). Total expression of Cx43 and its phosphorylated forms were significantly increased in all heart regions of hypothyroid rats compared to euthyroid controls. In contrast, the total levels of Cx43 and its functional phosphorylated forms were decreased in atria and left ventricle of hyperthyroid rats. In parallel, the expression of PKC epsilon that phosphorylates Cx43, at serine 368, was increased in hypothyroid but decreased in hyperthyroid rat hearts. Omega-3 intake did not significantly affect either Cx43 or PKC epsilon alterations. In conclusion, there is an inverse relationship between expression of cardiac Cx43 and the levels of circulating thyroid hormones. It appears that increased propensity of hyperthyroid while decreased of hypothyroid individuals to malignant arrhythmias may be in part attributed to the changes in myocardial Cx43., B. Szeiffová Bačová, T. Egan Beňová, C. Viczenczová, T. Soukup, H. Rauchová, S. Pavelka, V. Knezl, M. Barančík, N. Tribulová., and Obsahuje bibliografii
The possible protective action of L-carnitine on neuronal excitability was studied in 21-day-old male Wistar rats with implanted electrodes. Administration of L-carnitine did not change the elicitation and duration of the epileptic seizures (cortical afterdischarges, ADs) in rats under normobaric oxygen atmosphere conditions. However, in animals exposed to 30 min hypobaric hypoxia the duration of the ADs was shortened after the second, fourth and sixth stimulation (in comparison with the first evoked ADs) while carnitine-treated rats retained their neuronal excitability and the duration of ADs was shortened only after the third stimulation., D. Marešová, H. Rauchová, K. Jandová, I. Valkounová, J. Koudelová, S. Trojan., and Obsahuje bibliografii
a1_Reactive oxygen species (ROS) are common products of the physiological metabolic reactions, which are associated with cell signaling and with the pathogenesis of various nervous disorders. The brain tissue has the high rate of oxidative metabolic activity, high concentration of polyunsaturated fatty acids in membrane lipids, presence of iron ions and low capacity of antioxidant enzymes, which makes the brain very susceptible to ROS action and lipid peroxidation formation. Membranes of brain cortex show a higher production of thiobarbituric acid-reactive substances (TBARS) in prooxidant system (ADP.Fe3+/NADPH) than membranes from the heart or kidney. Lipid peroxidation influences numerous cellular functions through membrane-bound receptors or enzymes. The rate of brain cortex Na+ ,K+ -ATPase inhibition correlates well with the increase of TBARS or conjugated dienes and with changes of membrane fluidity. The experimental model of short-term hypoxia (simulating an altitude of 9000 m for 30 min) shows remarkable increase in TBARS in four different parts of the rat brain (cortex, subcortical structures, cerebellum and medulla oblongata) during the postnatal development of Wistar rat of both sexes. Young rats and males are more sensitive to oxygen changes than adult rats and females, respectively. Under normoxia or hypobaric hypoxia both ontogenetic aspects and sex differences play a major role in establishing the activity of erythrocyte catalase, which is an important part of the antioxidant defense of the organism. Rats pretreated with L-carnitine (and its derivatives) have lower TBARS levels after the exposure to hypobaric hypoxia. The protective effect of L-carnitine is comparable with the effect of tocopherol, well-known reactive species scavenger. Moreover, the plasma lactate increases after a short-term hypobaric hypoxia and decreases in L-carnitine pretreated rats., a2_Acute hypobaric hypoxia and/or L-carnitine-pretreatment modify serum but not brain lactate dehydrogenase activity. The obtained data seem to be important because the variations in oxygen tension represent specific signals of regulating the activity of many specific systems in the organism., H. Rauchová, M. Vokurková, J. Koudelová., and Obsahuje seznam literatury
Digitonin solubilizes mitochondrial membrane, breaks the integrity of the respiratory chain and releases two mobile redoxactive components: coenzyme Q (CoQ) and cytochrome c (cyt c). In the present study we report the inhibition of glycerol-3- phosphate- and succinate-dependent oxygen consumption rates by digitonin treatment. Our results show that the inhibition of oxygen consumption rates is recovered by the addition of exogenous synthetic analog of CoQ idebenone (hydroxydecylubiquinone; IDB) and cyt c. Glycerol-3-phosphate oxidation rate is recovered to 148 % of control values, whereas succinatedependent oxidation rate only to 68 %. We find a similar effect on the activities of glycerol-3-phosphate and succinate cytochrome c oxidoreductase. Our results also indicate that succinate-dependent oxidation is less sensitive to digitonin treatment and less activated by IDB in comparison with glycerol- 3-phosphate-dependent oxidation. These findings might indicate the different mechanism of the electron transfer from two flavoprotein-dependent dehydrogenases (glycerol-3-phosphate dehydrogenase and succinate dehydrogenase) localized on the outer and inner face of the inner mitochondrial membrane, respectively., H. Rauchová, M. Vokurková, Z. Drahota., and Obsahuje seznam literatury
Mitochondria as an energy generating cell device are very sensitive to oxidative damage. Our previous findings obtained in hepatocytes demonstrated that Complex I of the respiratory chain is more sensitive to oxidative damage than other respiratory chain complexes. We present additional data on isolated mitochondria showing that palmityl carnitine oxidation is strongly depressed at a low (200 μM) tert-butyl hydroperoxide (tBHP) concentration, while oxidation of the flavoprotein-dependent substrate - succinate is not affected and neither is ATP synthesis inhibited by tBHP. In the presence of tBHP, the respiratory control index for palmityl carnitine oxidation is strongly depressed, but when succinate is oxidized the respiratory control index remains unaffected. Our findings thus indicate that flavoprotein-dependent substrates could be an important nutritional factor for the regeneration process in the necrotic liver damaged by oxidative stress., Z. Červinková, H. Rauchová, P. Křiváková, Z. Drahota., and Obsahuje bibliografii a bibliografické odkazy
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase -mediated superoxide (O 2 - ) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren -2 renin gene (Ren -2 TGR) and their age -matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD) . We found no difference in the activity of NADPH oxidase measured as a lucigenin -mediated O 2 - production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren -2 TGR com pared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren -2 TGR+LOS) did not change NADPH oxidase -dependent O 2 - production in the kidney. We detected significantly elevated indirect m arkers of lipid peroxidation measured as th iobarbituric acid -reactive substance s (TBARS) in Ren -2 TGR, while they were significantly decreased in Ren -2 TGR +LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions., M. Vokurková, H. Rauchová, L. Řezáčová, I. Vaněčková, J. Zicha., and Obsahuje bibliografii
The concentration-dependence of tert-butyl hydroperoxide (BHP) inhibitory effect on oxygen consumption in isolated rat liver mitochondria was measured in the presence of various respiratory substrates. Strong inhibitory effect at low concentrations of BHP (15-30 μM) was found for oxoglutarate and palmitoyl carnitine oxidation. Pyruvate and glutamate oxidation was inhibited at higher concentrations of BHP (100-200 μM). Succinate oxidation was not affected even at 3.3 mM BHP. Determination of mitochondrial membrane potential has shown that in the presence of NADH-dependent substrates the membrane potential was dissipated by BHP but was completely restored after addition of succinate. Our data thus indicate that beside peroxidative damage of complex I also various mitochondrial NADH-dependent dehydrogenases are inhibited, but to a different extent and with different kinetics. Our data also show that succinate could be an important nutritional substrate protecting hepatocytes during peroxidative damage., R. Endlicher ... [et al.]., and Obsahuje seznam literatury