High variability in leaf gas exchange and related traits were found in 30 genotypes of field grown finger millet. The variability in carbon exchange rate per unit leaf area (PN) can be partly attributed to the differences in the stomatal conductance (gs) and area leaf mass (ALM). The PN was positively correlated with total dry matter (TDM). However, no relationship between PN and seed yield was found. The leaf area showed a positive and significant correlation with total biomass. None of the other gas-exchange traits had significant relationship either with TDM or with seed yield. The ALM showed a strong positive association with PN. However, it was not correlated with either total biomass or seed yield. As a result, the use of ALM as surrogate for PN for identifying high biomass producing genotypes only had a limited value. Hence selection for high PN would result in higher biomass producing types.
Two pearl millet [Pennisetum glaucum (L.) R. Br. emend. Stuntz] hybrids GHB-30 and MH-179 were given defoliation treatments prior to anthesis comprising zero leaf to intact control. Keeping or removing even flag leaf only significantly altered the grain yield. With increasing leaf area (leaf numbers) the grain yield also significantly increased. Test mass showed more or less a similar trend. The leaves in the upper portion (nearer to sink) showed a greater contribution to the grain yield than the lower ones (away from sink). However, the highest leaf efficiency in terms of contribution per unit leaf area and the contribution by the whole leaf to the grain yield was recorded by 4th and 3rd leaf, respectively. The stem (covered with petioles) contributed to the extent of around 12 %. The existing leaves compensated to some extent for the defoliated ones. and A. K. Joshi ... [et al.].
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg-1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (PN), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on PN was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply. and M. Ashraf, Ashfaq Ahmad, T. McNeilly.
Fifty-day old plants of Capsicum anmmm L, with two developed leaves were placed into controlled environment chambers at atmospheric (350 cm^ m'^, ACO2) and elevated (700 cm^ m-^, ECO2) CO2 concentrations under different nitrogen and water supply. Plant response to ECO2 and the modulating effect of the availability of nitrogen and water were evaluated. CO2 effects were significant only after 40 d of treatment, An increase in plant growth and yield was found in ECO2 plants only under a good supply of both water (HW) and nitrogen (HN). Chlorophyll concentration responded only to N supply. Root/shoot ratio was higher under ECO2 only under low N (LN) and low water (LW) supply. Leaf area and specific leaf area decreased under ECO2. Flowering and fructification took plače earlier in ECO2 under FIN and FIW. Thus, all CO2 effects were modulated by the N and water supply and the duration of exposure.
Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. Our experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, and 1.00 mM) as a foliar spray would protect citrus seedlings (Valencia orange/Bakraii) subjected to salt stress (0, 25, 50, and 75 mM NaCl). Growth parameters, leaf chlorophyll (Chl) content, relative water content (RWC), maximal quantum yield of PSII photochemistry (Fv/Fm), and gas-exchange variables were negatively affected by salinity. In addition, leaf electrolyte leakage (EL) and proline content increased by salinity treatments. Application of SA increased net photosynthetic rate and proline content in salt stressed plants and may have contributed to the enhanced growth parameters. SA treated plants had greater Chl content and RWC compared with untreated plants when exposed to salt stress. Fv/Fm ratio and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced EL compared to untreated plants, indicating possible protection of integrity of the cellular membrane. It appeared that the best ameliorative remedies of SA were obtained when Valencia orange/Bakraii seedlings were sprayed by 0.50 and 1.00 mM solutions. Overall, the adverse effects of salt stress could be alleviated by exogenous application of SA., D. Khoshbakht, M. R. Asgharei., and Obsahuje seznam literatury
Insect-infested (II) acorns germinated 3 d earlier than the healthy (H) ones. However, germination ratio of II-acorns was strongly decreased compared with H-acorns and there were great differences in activities of amylase. We found an apparently lower net photosynthetic rate and total chlorophyll contents of the first true leaf of II-acorns than of the H-ones. Maximal photochemical efficiency of photosystem 2 (PS2, Fv/Fm) decreased in seedlings germinated from II-acorns than from the H-ones. Infestation of insects, especially for weevil (Curculio spp.) had significantly negative effects on length of taproots, height of plants, dry mass (DM) of roots and the first fully expanded true leaf. Leaf area and total N content of the first true leaf declined due to limitation of resource reserves in cotyledons. Damage of cotyledons caused by weevil accounted much for poor development of seedlings germinated from II-acorns. A mutual relationship between seedling establishment and seed-infesting insects may exist due to high predation on H-acorns by small rodents. and X. F. Yi, Z. B. Zhang
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (α), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and α. An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (δL), root mass fraction (Rf), Pmax, and α remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. δL increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N. and Y. Jia, V. M. Gray.
Sugar beet cv. Rizor was grown for five growing seasons (2002-2006) in field conditions in Thessaly, central Greece. A total of 55 samplings took place during the growing seasons and allometric growth of the leaves was monitored. Highly significant (p<0.001) quadratic relationships were found between individual leaf mass (LM), individual leaf area (LA), aboveground dry biomass (ADB), and leaf area index (LAI). Only the LM-LA relationship (LA = 43.444 LM2 - 10.693 LM + 118.34) showed a relatively high r 2 (0.63) and thus could be used for prediction of LA. Specific leaf area (SLA) was significantly related with leaf water content (LWC) (SLA = 26 279 LWC2 - 44 498 LWC + 18 951, r 2 = 0.91, p<0.001) and thus LWC could be a good indirect predictor of SLA in this cultivar. and J. T. Tsialtas, N. Maslaris.
An indirect method of leaf area measurement for Rizor sugar beet cultivar was tested. Leaves were sampled during two growing seasons in a Randomised Complete Block Design experiment. For 2002 samplings, leaf area [cm2] was linearly correlated with maximum leaf width [cm] using all leaf samples (r2 = 0.83, p < 0.001) or using the means of the 8 sampling occasions (r2 = 0.97, p < 0.001). Correlations between leaf area and leaf mid vein length [cm] were weaker (r2 = 0.75, p < 0.001 and r2 = 0.93, p < 0. 001, respectively). For 2003 samplings, the area estimated by the equations was highly correlated to the measured leaf area. and J. T. Tsialtas, N. Maslaris.
Leaf area is one of the most important parameter for plant growth. Reliable equations were offered to predict leaf area for Zea mays L. cultivars. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiregression analysis, it was found that there was a close relationship between actual and predicted growth parameters. The produced leaf-area prediction model in the present study is LA =
a + b L + c W + d LZ where LA is leaf area, L is leaf length, W is maximum leaf width, LZ is leaf zone and a, b, c, d are coefficients.
R2 values were between 0.88-0.97 and standard errors were found to be significant at the p<0.001 significance level. and F. Oner ... [et al.].