Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. Our experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, and 1.00 mM) as a foliar spray would protect citrus seedlings (Valencia orange/Bakraii) subjected to salt stress (0, 25, 50, and 75 mM NaCl). Growth parameters, leaf chlorophyll (Chl) content, relative water content (RWC), maximal quantum yield of PSII photochemistry (Fv/Fm), and gas-exchange variables were negatively affected by salinity. In addition, leaf electrolyte leakage (EL) and proline content increased by salinity treatments. Application of SA increased net photosynthetic rate and proline content in salt stressed plants and may have contributed to the enhanced growth parameters. SA treated plants had greater Chl content and RWC compared with untreated plants when exposed to salt stress. Fv/Fm ratio and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced EL compared to untreated plants, indicating possible protection of integrity of the cellular membrane. It appeared that the best ameliorative remedies of SA were obtained when Valencia orange/Bakraii seedlings were sprayed by 0.50 and 1.00 mM solutions. Overall, the adverse effects of salt stress could be alleviated by exogenous application of SA., D. Khoshbakht, M. R. Asgharei., and Obsahuje seznam literatury
The influence of mineralogical composition, electrical conductivity and pH on the rheological properties of Latvian illite clays has been investigated. Samples from two deposits have been studied. The average plasticity index of samples from both Laza deposits is 23-25, but from Apriki - around 20. Based on these results, 2 sample s with different plasticity indices from each borehole were chosen for further research. All suspensions exhibityield-pseudoplastic behavior. Samples with the highest amount of clay minerals have the highest plasticity index and apparent viscosity. From 3 samples with similar amount of clay minerals and plasticity index one sample has higher pH and electrical conductivity and therefore exhibits lower viscosity., Inga Dusenkova, Valentina Stepanova, Jana Vecstaudza, Vitalijs Lakevics, Juris Malers and Liga Berzina-Cimdina., and Obsahuje bibliografické odkazy
Canola (Brassica napus) is cultivated for oil as a biofuel crop. Few quantitative data concerning its tolerance to abiotic stresses has been presented. We evaluated the tolerances of canola to drought and salinity stresses in terms of parameter values in a macroscopic root water uptake model. We conducted an experiment using nine columns with two plants in each: three columns were under drought stresses, another three were under saline stress and others provided potential transpiration. Two soil moisture and salinity probes were inserted into each of the six columns under stress to monitor water content and electrical conductivity. Weight of the columns was manually measured to obtain daily transpiration. Water uptake at each depth and time was calculated by substituting linearly interpolated matric and osmotic potentials into the stress response function. Determined stress response functions indicated that canola is more sensitive to drought compared to Jatropha. While, it was found to be as tolerant as Jatropha to salinity stress in terms of transpiration. Matric potential was more determining than osmotic potential to root water uptake of canola.
The composition of the vegetation of fishpond mires in the Třeboň Basin (Czech Republic) was studied in relation to temporal fluctuations in certain environmental factors. The water-table depth, water pH and electrical conductivity at 49 permanent plots were measured at approximately threeweek intervals from March to October 2003. Minimum, maximum, mean, median and variation in the above-mentioned environmental factors were correlated with vegetation composition. The most important environmental factors explaining the variation in vegetation were mean pH and maximum water-table level. Median conductivity increased with increase in waterlogging and eutrophication. Some seasonal trends in the dynamics of these parameters were observed. The lowest conductivity was in spring, increased continuously throughout summer and peaked in autumn. In contrast, water level decreased in summer, when evapotranspiration was greatest, and rose in autumn after heavy rainfall. The pH increased from March to June, then was stable and decreased at the end of summer. Seasonal trends were generally identical in all vegetation types. The fluctuations in the environmental factors were so considerable that they may influence the reliability of vegetation environmental analyses.
The purpose of this work was to detect groundwater pollution and to identify the conditions of soil and groundwater near the coal waste disposal "Panewniki" Halemba-Wirek Coal Mine using geoelectrical measurements. The firs t applied method was the VLF (Very Low Frequency) technique. This method, using military signals, allowed to perform the in-phase and the quadrature maps. Data were collected from four study areas located near the coal waste dump. Observed anomalies on both maps for each area showed places with different conductivity al lowed to detect the contaminated and uncontaminated zones. The VLF survey indicated that the contamination occurs in the eastern part of study area and is characterized by positive values of both measured electrical fields (the in-phase and the quadrature components). After preliminary contaminated zones were recognized using VLF met hod, an electrical imaging meth od was applied. Two electrical imaging profiles were carried out near the waste dump. The measurements a llowed to create the geoele ctrical model of surrounding area and to investigate the leachate plume. The electrical imaging showed that the greatest pollution occur in the area immediately adjacent to the coal waste what is confirmed by VL F survey. Based on the geological and ge ophysical knowledge from archives and on present researches, the contaminated aquifer with electrical resistivity of 5 to 15 Ω m deposited at depths of 3 to 7 m was found., Arlena Kowalska, Marta Kondracka and Maciej Jan Mendecki., and Obsahuje bibliografické odkazy