The role of clonal traits in a plant’s response to changes in management of semi-natural grasslands is poorly known and the few studies examining their importance have yielded contradictory results. For a better understanding of the role of plant functional traits in determining competitive ability and clonal growth in response to early changes in management, we mowed and applied fertilizer to 22 wet meadows in the Železné hory Mts, Czech Republic. We used two methods of assessing abundance (plant cover and species frequency) to determine whether changes in frequency induced by changes in management are better predicted by clonal traits while changes in cover are mainly determined by competitive traits such as plant height. We evaluated (i) the response of individual species to changes in management and (ii) the response of the whole community, with and without taking abundance of individual plants into account, in order to separate the effect of local extinction and immigration from changes in abundance. The plant functional traits tested were generally found to be important soon after the changes in the management of the semi-natural grasslands occurred: competitively superior resident species (possessing tall erosulate, monocyclic shoots) that are able to spread far and multiply clonally (having a high clonal index) were favoured by applying fertilizer and/or suppressed by mowing. Some other traits supposed to be important in the response to changes in management did not change (persistence of connection between ramets). Results for the two methods of assessing abundance differed; however, neither was better at detecting the response of particular types of traits (i.e. relevant to clonal growth and competitive ability). The initial response of the whole community, with and without taking abundance of individual plants into account, was consistent indicating that species that went extinct possessed the same traits as those that decreased in abundance. The clonal index proved to be a useful characteristic of meadow plants. Our results further imply that (i) the method used to assess abundance significantly affects the output of analyses of the response of functional traits, and (ii) a comparison of analyses based on weighting abundance and unweighted means resulted in a deeper insight into the changes in the spectra of functional traits that occurred after changes in meadow management.
Fifty-day old plants of Capsicum anmmm L, with two developed leaves were placed into controlled environment chambers at atmospheric (350 cm^ m'^, ACO2) and elevated (700 cm^ m-^, ECO2) CO2 concentrations under different nitrogen and water supply. Plant response to ECO2 and the modulating effect of the availability of nitrogen and water were evaluated. CO2 effects were significant only after 40 d of treatment, An increase in plant growth and yield was found in ECO2 plants only under a good supply of both water (HW) and nitrogen (HN). Chlorophyll concentration responded only to N supply. Root/shoot ratio was higher under ECO2 only under low N (LN) and low water (LW) supply. Leaf area and specific leaf area decreased under ECO2. Flowering and fructification took plače earlier in ECO2 under FIN and FIW. Thus, all CO2 effects were modulated by the N and water supply and the duration of exposure.
Quantifying the functional diversity in ecological communities is very promising for both studying the response of diversity to environmental gradients and the effects of diversity on ecosystem functioning (i.e. in “biodiversity experiments”). In our view, the Rao coefficient is a good candidate for an efficient functional diversity index. It is, in fact, a generalization of the Simpson’s index of diversity and it can be used with various measures of dissimilarity between species (both those based on a single trait and those based on several traits). However, when intending to quantify the functional diversity, we have to make various methodological decisions such as how many and which traits to use, how to weight them, how to combine traits that are measured at different scales and how to quantify the species’ relative abundances in a community. Here we discuss these issues with examples from real plant communities and argue that diversity within a single trait is often the most ecologically relevant information. When using indices based on many traits, we plead for careful a priori selection of ecologically relevant traits, although other options are also feasible. When combining many traits, often with different scales, methods considering the extent of species overlap in trait space can be applied for both the qualitative and quantitative traits. Another possibility proposed here is to decompose the variability of a trait in a community according to the relative effect of among- and within-species differentiation (with the latter not considered by current indices of functional diversity), in a way analogical to decomposition of Sum of squares in ANOVA. Further, we show why the functional diversity is more tightly related to species diversity (measured by Simpson index) when biomass is used as a measure of population abundance, in comparison with frequency. Finally, the general expectation is that functional diversity can be a better predictor of ecosystem functioning than the number of species or the number of functional groups. However, we demonstrate that some of the expectations might be overrated – in particular, the “sampling effect“ in biodiversity experiments is not avoided when functional diversity is used as a predictor.