We experimentally produced moderate water stress that reduced leaf, stem, root and fruit biomass of peppers, and severe nitrogen (N) limitations that almost stopped their development. Root/shoot ratios (R/S) were higher in N-limited plants. Low water availability (and also low N availability) produced lower stomatal conductance (g,). Specific leaf mass was higher and chlorophyll (Chl) concentration was lower under low N-availability. The same experimental conditions produced smaller differences among treatments in beans (with N-fixing symbionts). Water stress increased its relative importance as shown by the induced increase in root/shoot ratio. N stress was less important as shown by the absence of effects on Chl concentrations and g^. Both peppers and beans responded to limited availability of nitrogen and water by allocating to structures involved in uptake (roots), by longer organ duration, and by increasing the efficiency of N and water use.
Plants of pepper (Capsicum amuum L.) were grown in controlled environment chambers at ambient (360 pmol mol"*) and fluctuating pulse-enriched CO2 concentrations (700 pmol mol"* daily average, ranging from 500 to 3500 pmol mol"* = ECO2) under two water regimes. A decrease in plant growth and yield together with frequent visual injuries was found in plants growing under ECO2. Root/shoot ratio was greater, chlorophyll concentration and respiration rates were lower, and stomatal conductance and relative importance of alternativě pathway respiration were higher under ECO2. The negative effects of ECO2 were more intense under high water availability. The symptoms produced by ECO2 were similar to those of resource limitation, and were alleviated with increased nutrient supply. Constant elevated CO2 concentrations (700 pmol mol"*) increased pepper production and did not produce any of the injuries described for this erratic ECO2 treatment. Thus, it is probably the erratic nátuře of the CO2 concentration and not the gas itself that was causing the injiuy.
We compared flavonoids in green, mature, and senescing flag leaves of wheat grown under ambient (AC - 370 μmol mol-1) and elevated (EC - 550 μmol mol-1) concentrations of CO2 in a FACE (Free Air CO2 Enrichment) system. The concentrations of flag leaf flavonoids (e.g., isoorientin and tricin) decreased to one third in mature leaves, and the majoritary isoorientin almost disappeared in senescing leaves. Flavonoid concentrations increased in green well-developed flag leaves under EC (46 % isoorientin and 55 % tricin), whereas the differences disappeared in mature and senescing flag leaves. Predictions of changes in litter phenolic concentrations and their effects on decomposition rates under EC based on changes in green leaves need to be revised. and J. Peñuelas, M. Estiarte, B. A. Kimball.
Fifty-day old plants of Capsicum anmmm L, with two developed leaves were placed into controlled environment chambers at atmospheric (350 cm^ m'^, ACO2) and elevated (700 cm^ m-^, ECO2) CO2 concentrations under different nitrogen and water supply. Plant response to ECO2 and the modulating effect of the availability of nitrogen and water were evaluated. CO2 effects were significant only after 40 d of treatment, An increase in plant growth and yield was found in ECO2 plants only under a good supply of both water (HW) and nitrogen (HN). Chlorophyll concentration responded only to N supply. Root/shoot ratio was higher under ECO2 only under low N (LN) and low water (LW) supply. Leaf area and specific leaf area decreased under ECO2. Flowering and fructification took plače earlier in ECO2 under FIN and FIW. Thus, all CO2 effects were modulated by the N and water supply and the duration of exposure.