In plants, hydrogen peroxide (H2O2) acts as a signalling molecule that facilitates various biochemical and physiological processes. H2O2 is a versatile molecule, involved in several cellular processes both under stress and stress-free conditions. In regulating plant metabolism under stress conditions, exogenous application of H2O2 also plays a pivotal role which is manifested in improved growth, photosynthetic capacity, and antioxidant protection. Abiotic stress is an inevitable environmental factor that extensively affects and reduces growth, quality, yield, and productivity of plants. Several signalling pathways involved in H2O2-mediated stress and defense responses have been extensively studied and there is ample scope of additional research that could further clarify the mechanism and modulating factors which regulate these pathways. An attempt has been made to dissect the role of H2O2 under low temperature stress and how it affects plant growth and development, photosynthetic capacity, regulation of antioxidant system, and signalling., T. A. Khan, M. Yusuf, Q. Fariduddin., and Obsahuje bibliografii
Influence of different phosphorus concentrations was studied in four rice varieties (Akhanphou, MTU1010, RP BIO 226, and Swarna) differing in their tolerance to low phosphorus. There was an increase in shoot and root dry mass with the increase in phosphorus concentration. At the low phosphorus concentration at both tillering and reproductive stages, Swarna, followed by Akhanphou, recorded maximum biomass for both roots and shoots, while the minimum was observed in RP BIO 226. Reduction in photosynthetic rate, stomatal conductance, transpiration rate, and internal CO2 concentration at low phosphorus concentrations were observed at both tillering and reproductive stages in all the genotypes. In low phosphorus, maximum photosynthetic rate was found in Swarna followed by Akhanphou. Phosphorus deficiency did not alter the maximum efficiency of PSII photochemistry, however, there was a reduction in effective PSII quantum yield, electron transport rate, and coefficient of photochemical quenching, while the coefficient of nonphotochemical quenching was higher in the low phosphorus-treated plants. Prolonged exposure to excessive energy and failure to utilize the energy in carbon-reduction cycle induced the generation of reactive oxygen species, which affected PSII as indicated by the fluorescence traits. The reduction was less severe in case of Swarna and Akhanphou. The activities of superoxide dismutase, peroxidase, and catalase increased in roots under low phosphorus concentration indicating that photoprotective mechanisms have been initiated in rice plants in response to phosphorus deficiency. Comparatively, Swarna and Akhanphou exhibited a higher biomass, higher photosynthetic rate, and better reactive oxygen species-scavenging ability which conferred tolerance under low phosphorus conditions., N. Veronica, D. Subrahmanyam, T. Vishnu Kiran, P. Yugandhar, V. P. Bhadana, V. Padma, G. Jayasree, S. R. Voleti., and Obsahuje bibliografii
The effect of exogenous noradrenaline (NA) (1.6 mg.kg-1 i.p., 35 min prior sacrifice) on the activity of antioxidant enzymes (AOE) copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as lipid peroxides (LP) concentration were studied in the rat interscapular brown adipose tissue (IBAT) and heart of saline (controls) and Nω-nitro-L-arginine methyl ester (L-NAME) treated rats (10 mg.kg-1, i.p., during 3 days and 20 min before NA). NA differently affects both AOE activities and LP production in the IBAT and heart. Thus, NA inhibited the activity of all IBAT AOE and LP production while in the heart it markedly increased CAT activity only, but had no effect on any of SODs activities and LP concentration. L-NAME, a nitric oxide synthase blocker, completely abolished the NA-induced inhibition of the IBAT AOE and LP production, whereas in the heart it was without effect. In conclusion, these results indicate that both NA and L-NAME effects on AOE activity and LP production are tissue specific and also suggest that nitric oxide mediates the NA-induced inhibition of AOE activity and LP production in the IBAT only., A. Perovic, T. Vuckovic, G. Cvijic, J. Djordjevic, V. Davidovic., and Obsahuje bibliografii a bibliografické odkazy
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of proinflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
In this study we analyzed the effects of melatonin (Mel, 1 mg/kg ip) on behavioral changes as well as cell and oxidative damage prompted by bilaterally olfactory bulbectomy. Olfactory bulbectomy caused an increase in lipid peroxidation products and caspase-3, whereas it prompted a decrease of reduced glutathione (GSH) content and antioxidative enzymes activities. Additionally, olfactory bulbectomy induced behavioral changes characterized by the enhancement of immobility time in the forced swim test and hyperactivity in the open field test. All these changes were normalized by treatment of Mel (14 days). Our data show that Mel has a beneficial neuropsychiatric action against oxidative stress, cell damage and behavior alterations., I. Tasset ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Oxidative stress is a phenomenon associated with imbalance between production of free radicals and reactive metabolites (e.g. superoxide and hydrogen peroxide) and the antioxidant defences. Oxidative stress in individuals with Down syndrome (DS) has been associated with trisomy of the 21st chromosome resulting in DS phenotype as well as with various morphological abnormalities, immune disorders, intellectual disability, premature aging and other biochemical abnormalities. Trisomy 21 in patients with DS results in increased activity of an important antioxidant enzyme Cu/Zn superoxide dismutase (SOD) which gene is located on the 21st chromosome along with other proteins such as transcription factor Ets-2, stress inducing factors (DSCR1) and precursor of beta-amyloid protein responsible for the formation of amyloid plaques in Alzheimer disease. Mentioned proteins are involved in the management of mitochondrial function, thereby promoting mitochondrial theory of aging also in people with DS. In defence against toxic effects of free radicals and their metabolites organism has built antioxidant defence systems. Their lack and reduced function increases oxidative stress resulting in disruption of the structure of important biomolecules, such as proteins, lipids and nucleic acids. This leads to their dysfunctions affecting pathophysiology of organs and the whole organism. This paper examines the impact of antioxidant interventions as well as positive effect of physical exercise on cognitive and learning disabilities of individuals with DS. Potential terapeutic targets on the molecular level (oxidative stress markers, gene for DYRK1A, neutrophic factor BDNF) after intervention of natural polyphenols are also discussed., J. Muchová, I Žitňanová, Z. Ďuračková., and Obsahuje bibliografii
Oxidative stress has been implicated to play a major role in aging and age-related diseases. In the present study, we investigated the effects of aging on the total antioxidant capacity, uric acid, lipid peroxidation, total sulfhydryl group content and damage to DNA in adult (6 months), old (15 months) and senescent (26 months) male Wistar rats. The antioxidant capacity, determined by phycoerythrin-based TRAP method (total peroxyl radical-trapping potential) was significantly decreased in the plasma and myocardium of old and senescent rats, whereas plasma level of uric acid was elevated in 26-month-old rats. Age-related decline in plasma and heart antioxidant capacity was accompanied by a significant loss in total sulfhydryl group content, increased lipid peroxidation and higher DNA damage in lymphocytes. Correlations between TRAP and oxidative damage to lipids, proteins and DNA suggest that the decline in antioxidant status may play an important role in age-related accumulation of cell damage caused by reactive oxygen species., M. Sivoňová, Z. Tatarková, Z. Ďuračková, D. Dobrota, J. Lehotský, T. Matáková, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
Heat stress has become more common in recent years, limiting wheat production in Huang-Huai-Hai plain in China. To identify the effect of long-term heat stress on wheat production, two heat-resistant (JM44, JM23) and two heat-sensitive (XM26, GC8901) wheat varieties were sown in heat tents and normal conditions, and heat stress (9 to 12℃ higher than control) was imposed for seven days at post-anthesis. All varieties under heat stress exhibited early senescence and reduced grain-filling rate, while the grain-filling period of heat-tolerant varieties was longer than that of the heat-sensitive. Furthermore, long-term heat stress significantly reduced kernel mass, grain number, harvest index, chlorophyll content, maximum quantum yield of PSⅡ photochemistry, effective quantum yield of PSⅡ photochemistry, photosynthetic rate, and transpiration efficiency. In addition, the distribution of dry matter to vegetative organs, catalase activity, and malondialdehyde content increased. These results indicated that the lesser yield reduction of heat-resistant varieties (11-26%) than that of heat-sensitive (16-37%) is due to relatively higher antioxidative and photosynthetic performance and higher assimilation in the grain from vegetative organs.
A sand-culture experiment was conducted in open-top chambers which were constructed in a greenhouse to investigate the responses of salt-stressed wheat (Triticum aestivum L.) to O3. Plant seeding of JN17 (a popular winter wheat cultivar) was grown in saltless (-S) and saline (+S, 100 mM NaCl) conditions combined with charcoal-filtered air (CF, < 5 ppb O3) and elevated O3 (+O3,
80 ± 5 ppb, 8 h day-1) for 30 d. O3 significantly reduced net photosynthetic rate (PN), stomatal conductance, chlorophyll contents and plant biomass in -S treatment, but no considerable differences were noted in those parameters between +O3+S and CF+S treatments. O3-induced loss in cellular membrane integrity was significant in -S plants, but not in +S plants evidenced by significant elevations being measured in electrolyte leakage (EL) and malondialdehyde (MDA) content in -S plants, but not in +S plants. Both O3 and salinity increased proline content and stimulated antioxidant enzymes activities. Soluble protein increased by salinity but decreased by O3. Abscisic acid (ABA) was significantly elevated by O3 in -S plants but not in +S plants. The results of this study suggested that the specificity of different agricultural environments should be considered in order to develop reliable prediction models on O3 damage to wheat plants. and Y. H. Zheng ... [et al.].
As wine polyphenols were show n to possess many positive effects in mammals, including improvement of vascular function, this study investigated the effect of the Slovak Alibernet red wine extract (AWE) on blood pressure and vascular function in young normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Six weeks old, male, WKY and SHR were treated with AWE for three weeks at the dose of 24.2 mg/kg/day. Blood pressure (BP), determined by tail-cuff plethysmography, was significantly elevated in SHR vs. WKY and AWE failed to affect it. Lipid peroxidation was evaluated by determination of thiobarbituric acid-reactive substances. Vascular function was assessed in rings of the femoral artery using Mulvany-Halpern’s myograph. Maximal endothelium-dependent acetylcholine (ACh)-induced rela xation was reduced in control SHR vs. WKY rats by approximatel y 9.3 %, which was associated with a significant decrease of its NO-independent component. AWE failed to affect maximal AC h-induced relaxation, both its NO-dependent and independen t components, compared to controls of the same genotype. AWE however reduced lipid peroxidation in the left ventricle of both WKY and SHR and in the liver of SHR. In conclusion, three-week administration of AWE failed to reduce BP and to improve endothelial function in the femoral arteries of both genotypes investigated., P. Bališ ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy