Cr(VI) significantly reduced rates of net photosynthesis and transpiration and of stomatal conductance. Cr(VI) did not affect the Fv/Fm ratio of chlorophyll fluorescence implying that the primary photochemical processes in photosystem 2 were not affected. However, the efficiency of excitation capture by open PS2 centres, in vivo quantum yield of PS2 photochemistry, and electron transport rate were significantly reduced by Cr(VI). The coefficient of photochemical quenching was reduced with a concomitant increase in coefficient of non-photochemical quenching, suggesting reduced demand for ATP and NADPH due to inhibition of CO2 assimilation. Lipid peroxidation was increased by Cr(VI) and the activities of superoxide dismutase and catalase (CAT) were increased. However, the CAT activity was reduced by high Cr(VI) concentration. The activities of ascorbate peroxidase and glutathione reductase were significantly reduced by Cr(VI) treatment.
Influence of different phosphorus concentrations was studied in four rice varieties (Akhanphou, MTU1010, RP BIO 226, and Swarna) differing in their tolerance to low phosphorus. There was an increase in shoot and root dry mass with the increase in phosphorus concentration. At the low phosphorus concentration at both tillering and reproductive stages, Swarna, followed by Akhanphou, recorded maximum biomass for both roots and shoots, while the minimum was observed in RP BIO 226. Reduction in photosynthetic rate, stomatal conductance, transpiration rate, and internal CO2 concentration at low phosphorus concentrations were observed at both tillering and reproductive stages in all the genotypes. In low phosphorus, maximum photosynthetic rate was found in Swarna followed by Akhanphou. Phosphorus deficiency did not alter the maximum efficiency of PSII photochemistry, however, there was a reduction in effective PSII quantum yield, electron transport rate, and coefficient of photochemical quenching, while the coefficient of nonphotochemical quenching was higher in the low phosphorus-treated plants. Prolonged exposure to excessive energy and failure to utilize the energy in carbon-reduction cycle induced the generation of reactive oxygen species, which affected PSII as indicated by the fluorescence traits. The reduction was less severe in case of Swarna and Akhanphou. The activities of superoxide dismutase, peroxidase, and catalase increased in roots under low phosphorus concentration indicating that photoprotective mechanisms have been initiated in rice plants in response to phosphorus deficiency. Comparatively, Swarna and Akhanphou exhibited a higher biomass, higher photosynthetic rate, and better reactive oxygen species-scavenging ability which conferred tolerance under low phosphorus conditions., N. Veronica, D. Subrahmanyam, T. Vishnu Kiran, P. Yugandhar, V. P. Bhadana, V. Padma, G. Jayasree, S. R. Voleti., and Obsahuje bibliografii
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (PN), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored PN and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F'v/F'm) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress. and D. Subrahmanyam ... [et al.].
Variations in leaf gas-exchange characteristics, leaf pigment content, and other important leaf traits were investigated in seven wild Oryza species, five hybrids, and five improved varieties. The significant variations were observed in photosynthetic pigment contents amongst different species of Oryza. The mean chlorophyll (Chl) content was higher in O. sativa (varieties and hybrids), while O. eichengeri showed the lowest Chl content. The mean carotenoid (Car) content in O. sativa (varieties and hybrids) was higher than in other wild rice species. O. eichengeri and O. barthii had significantly lower Car contents than other rice species. Significant differences were noticed in the rate of photosynthesis (PN), stomatal conductance (gs), transpiration rate (E), internal CO2 concentration (Ci), specific leaf mass (SLM), and leaf thickness amongst different Oryza species. The mean PN was the highest in O. nivara followed by O. eichengeri. The mean PN was the lowest in O. glumaepatula, which was lower than that of cultivated varieties and hybrids of O. sativa. High rates of photosynthesis were observed in O. nivara (ACC. No. CR 100097), O. rufipogon (ACC.No. CR 100267), and O. nivara (ACC.No. CR 100008). The O. nivara and O. rufipogon genotypes with high PN might be used in rice improvement programmes for an increase of leaf photosynthesis in rice. Multiple correlations performed between different gas-exchange characteristics and other physiological traits revealed that the rate of photosynthesis was not dependent on the leaf pigment content or the leaf thickness. A strong positive correlation between PN and the PN/Ci ratio, which represents the carboxylation efficiency, indicated that the observed variation in PN was not based on pigment content or other leaf traits. and T. V. Kiran ... [et al.].