The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An age-dependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate., J.-L. Wu, Q.-P. Wu, X.-F. Yang, M.-K. Wei, J.-M. Zhang, Q. Huang, X.-Y. Zhou., and Obsahuje bibliografii a bibliografické odkazy
Oxidative stress has been implicated to play a major role in aging and age-related diseases. In the present study, we investigated the effects of aging on the total antioxidant capacity, uric acid, lipid peroxidation, total sulfhydryl group content and damage to DNA in adult (6 months), old (15 months) and senescent (26 months) male Wistar rats. The antioxidant capacity, determined by phycoerythrin-based TRAP method (total peroxyl radical-trapping potential) was significantly decreased in the plasma and myocardium of old and senescent rats, whereas plasma level of uric acid was elevated in 26-month-old rats. Age-related decline in plasma and heart antioxidant capacity was accompanied by a significant loss in total sulfhydryl group content, increased lipid peroxidation and higher DNA damage in lymphocytes. Correlations between TRAP and oxidative damage to lipids, proteins and DNA suggest that the decline in antioxidant status may play an important role in age-related accumulation of cell damage caused by reactive oxygen species., M. Sivoňová, Z. Tatarková, Z. Ďuračková, D. Dobrota, J. Lehotský, T. Matáková, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
Low temperature during the vegetative stage affects rice (Oryza sativa L.) seed-setting rate in Heilongjiang province at Northeast China. However, little is known about changes of the photosynthetic rate and physiological response in contrasting rice cultivars during chilling periods. In this study, two rice cultivars with different chilling tolerance were treated with 15°C from June 27 to July 7. The chilling-susceptive cultivar, Longjing11 (LJ11), showed a significant decrease in a ripening rate and seed-setting rate after being treated for four days, whilst chilling-tolerant cultivar, Kongyu131 (KY131), was only slightly affected after 4-d treatment. The photosynthetic activities, chlorophyll contents, and antioxidative enzyme activities in LJ11 decreased significantly along with the chilling treatment. The decrease in ß-carotene contents might play a role as it could cause direct photooxidation of chlorophylls and lead to the inhibition of the photosynthetic apparatus. In the meantime, no significant damage was found in leaves of KY131 from June 27 to July 11. In conclusion, the chilling-tolerance mechanism of rice is tightly related to the photosynthetic rate, metabolism of reactive oxygen species, and scavenging system in the vegetative stage., L.-Z. Wang, L.-M. Wang, H.-T. Xiang, Y. Luo, R. Li, Z.-J. Li, C.-Y. Wang, Y. Meng., and Obsahuje bibliografii