Accumulating evidence indicates that hypertension is associated with "ion channel remodeling" of vascular smooth muscle cells (VSMCs). The objective of this study was to determine the effects of exercise intensity/volume on hypertension-associated changes in large-conductance Ca2+-activated K+ (BKCa) channels in mesenteric arteries (MAs) from spontaneously hypertensive rats (SHR). Male SHRs were randomly assigned to three groups: a low-intensity aerobic exercise group (SHR-L: 14 m/min), a moderate-intensity aerobic exercise group (SHR-M: 20 m/min), and a sedentary group (SHR). Age-matched Wistar-Kyoto rats (WKYs) were used as normotensive controls. Exercise groups completed an 8-week exercise program. Elevation of the α and β1 proteins was unequal in MA myocytes from SHRs, with the β1 subunit increasing more than the α subunit. BKCa contribution to vascular tone regulation was higher in the myocytes and arteries of SHRs compared to WKYs. SHR BKCa channel subunit protein expression, β1/α ratio, whole cell current density and single-channel open probability was also increased compared with WKYs. Aerobic exercise lowered systemic blood pressure and normalized hypertension-associated BKCa alterations to normotensive control levels in the SHRs. These effects were more pronounced in the moderate-intensity group than in the low-intensity group. There is a dose-effect for aerobic exercise training in the range of low to moderate-intensity and accompanying volume for the correction of the pathological adaptation of BKCa channels in myocytes of MAs from SHR., Y. Zhang, Y. Chen, L. Zhang, N. Lu, L. Shi., and Obsahuje bibliografii
The accurate and nondestructive determination of individual leaf area (LA) of plants, by using leaf length (L) and width (W) measurement or combinations of them, is important for many experimental comparisons. Here, we propose reliable and simple regressions for estimating LA across different leaf-age groups of eight common evergreen broadleaved trees in a subtropical forest in Gutianshan Natural Reserve, eastern China. During July 2007, the L, W, and LA of 2,923 leaves (202 to 476 leaves for each species) were measured for model construction and the respective measurements on 1,299 leaves were used for model validation. Mean L, W, LA and leaf shape (L:W ratio) differed significantly between current and older leaves in four out of the eight species. The coefficients of one-dimension LA models were affected by leaf age for most species while those incorporating both leaf dimensions (L and W) were independent of leaf age for all the species. Therefore, the regressions encompassing both L and W (LA = a L W + b), which were independent of leaf age and also allowed reliable LA estimations, were developed. Comparison between observed and predicted LA using these equations in another dataset, conducted for model validation, exhibited a high degree of correlation (R 2 = 0.96-0.99). Accordingly, these models can accurately estimate the LA of different age groups for the eight evergreen tree species without using instruments. and L. Zhang, L. Pan.
Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol-1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3., L. Zhang, L. L. Jia, J. X. Sui, M. X. Wen, Y. J. Chen., and Obsahuje bibliografii
Sleep is regulated by complex biological systems and environmental influences, neither of which is fully clarified. This study demonstrates differential effects of partial sleep deprivation (SD) on sleep architecture and psychomotor vigilance task (PVT) performance using two different protocols (sequentially) that each restricted daily sleep to 3 hours in healthy adult men. The protocols differed only in the period of sleep restriction; in one, sleep was restricted to a 3-hour block from 12:00 AM to 3:00 AM, and in the other, sleep was restricted to a block from 3:00 AM to 6:00 AM. Subjects in the earlier sleep restriction period showed a significantly lower percentage of rapid-eye-movement (REM) sleep after 4 days (17.0 vs. 25.7 %) and a longer latency to the onset of REM sleep (L-REM) after 1 day (78.8 vs. 45.5 min) than they did in the later sleep restriction period. Reaction times on PVT performance were also better (i.e. shorter) in the earlier SR period on day 4 (249.8 vs. 272 ms). These data support the view that earlier-night sleep may be more beneficial for daytime vigilance than later-night sleep. The study also showed that cumulative declines in daytime vigilance resulted from loss of total sleep time, rather than from specific stages, and underscored the reversibility of SR effects with greater amounts of sleep., H. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
a1_Attention should be paid to ozone (O3) sensitivity of greening plant since ground-level O3 concentrations are increasing especially in urban and suburban area. We studied the ecophysiological responses to elevated O3 of four shrub species [Euonymus bungeanus Maxim. (EB), Photinia × fraseri (PF), Chionanthus retusus Lindl. & Paxt. (CR) and Cornus alba L. (CA)], which are often used for garden greening in China. Saplings of those species were exposed to high O3 concentration (70 nmol mol-1, 7 h d-1 for 65 d) in open-top growth chambers. Responses to O3 were assessed by gas exchanges, chlorophyll (Chl) fluorescence and dry mass. We found that elevated O3 significantly decreased lightsaturated net photosynthetic rate (PNsat), transpiration rate (E) and stomatal conductance (gs). The ratio of intercellular CO2 to ambient CO2 concentration (Ci/Ca) did not reduce under O3 fumigation which suggested that the O3-induced depressions of P Nsat under O3 fumigation were probably due to limitation of mesophyll processes rather than stomatal limitation. High O3 exposure also significantly depressed the maximum efficiency of photosystem II (PSII) photochemistry in the dark-adapted state (Fv/Fm) which meant the O3-induced photoinhibition. Both root dry mass and root/shoot ratios were significantly decreased under ozone fumigation, but the total mass was unchanged. The responses of gas exchange such as PNsat in these four shrubs to O3 exposure were species-specific. Highest loss of PNsat was observed in EB (-49.6%), while the CR had the lowest loss (-36.5%). Moreover, the O3-exposed CR showed similar gs as CF, reflecting that its O3 flux might be unchanged under elevated O3 environment. Ozone drastically decreased actual quantum yield of PSII (ΦPSII) and electron transport rate (ETR) in EB while increased ΦPSII and ETR in CR., a2_Furthermore, the relative losses in P Nsat positively correlated with the relative decreases in ΦPSII and ETR which indicated that the impairment of photosynthesis was probably affected by the light reaction process. The light reaction of EB was impaired most seriously but that of CR was not damaged. All results indicated that EB was probably the most sensitive shrub species to O3 while CR the most tolerant one. Therefore, CR might be an ideal choice for greening in ozone-polluted areas., L. Zhang ... [et al.]., and Obsahuje bibliografii
Anthropogenic activities are changing global precipitation regimes and result in many middle latitude arid and semiarid regions experiencing less precipitation and more extreme weather events. However, little is known about the response of active ingredient accumulation in the medicinal herb Plantago depressa Willd. Therefore, we carried out a greenhouse experiment in order to study effect of control (CK, normal water supply equal to 309 mm per four months), -30 (-WS) and +30% (+WS) of the control water supply on the photosynthesis (PN), C/N ratio, and plantamajoside accumulation in P. depressa. Our results showed that compared with the-WS and CK treatments, the +WS treatment significantly enhanced biomass, the C/N ratio, plantamajoside concentration, yield in shoots and roots, and PN, but declined the N concentration in shoots and roots. The plantamajoside concentration was positively correlated with PN, the soluble sugar content, and the C/N ratio, but negatively correlated with the N concentration. Our results suggested that, under experimental conditions, +WS increased the C/N ratio and promoted the plantamajoside accumulation of P. depressa., Z. Li, W. Bai, L. Zhang, L. Li., and Obsahuje bibliografii
Nondestructive methods to estimate individual leaf area (LA) accurately, by leaf length (L) and/or width (W), is helpful for the in situ and successive LA measurements. However, leaf shape and size may covary with environment and thus alter the coefficients of LA estimation models. To test such hypothesis, we carried out an experiment by measuring Saussurea stoliczkai C. B. Clarke leaves along an altitudinal transect in Damxung county, central Tibet. In July 2011, we selected seven sites at about every 150 m in altitude from 4,350 m to 5,250 m a.s.l. A total of 1,389 leaves (182 to 203 leaves for each site) were measured. For each site, models developed by two leaf dimensions [LA = a (L×W) + b] could estimate LA more accurately than those by single dimension. L, W, LA and leaf shape index (L:W ratio) all decreased with increasing altitude, leading to significant differences in coefficients of two-dimension model between almost every two sites. Accordingly, a common
two-dimension model is unlikely to occur for S. stoliczkai across the whole altitudinal transect, indicating that the varying leaf shape may alter the coefficient of LA estimation models., Z. Wang, L. Zhang., and Obsahuje bibliografii
One difficulty for quaternion neural networks (QNNs) is that quaternion nonlinear activation functions are usually non-analytic and thus quaternion derivatives cannot be used. In this paper, we derive the quaternion gradient descent, approximated quaternion Gauss-Newton and quaternion Levenberg-Marquardt algorithms for feedforward QNNs based on the GHR calculus, which is suitable for analytic and non-analytic quaternion functions. Meanwhile, we solve a widely linear quaternion least squares problem in the derivation of quaternion Gauss-Newton algorithm, which is more general than the usual least squares probŹlem. A rigorous analysis of the convergence of the proposed algorithms is provided. Simulations on the prediction of benchmark signals support the approach.
Ozone (O3) is important air pollutant inducing severe losses of horticultural production. Cultivars of the same species, but with different leaf colors, may differ in their ozone sensitivity. However, it has not been clarified yet if different leaf coloration influences such a sensitivity. In this study, two purple-leafed and two green-leafed cultivars of Pakchoi were selected for ozone fumigation (240 ± 20 nmol mol-1, 09:00-16:00 h). Elevated O₃ decreased chlorophyll content, increased anthocyanin (Ant) content, damaged cell membrane integrity, enhanced antioxidative enzyme activities, depressed photosynthetic rate (PN) and stomatal conductance (gs), inhibited maximal quantum yield (Fv/Fm) and effective quantum yield [YII] of PSII photochemistry, and caused visible injury. Purple-leafed cultivars with higher Ant contents were more tolerant than green-leafed cultivars as indicated by lower relative enhancement in malondialdehyde content and lower relative losses in PN, gs, Fv/Fm, and YII. The higher ability to synthesize Ant in the purple-leafed cultivars contributed to their higher photoprotective ability., L. Zhang, S. Xiao, Y. J. Chen, H. Xu, Y. G. Li, Y. W. Zhang, F. S. Luan., and Obsahuje bibliografii
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80-85 % (O3+W) or drought treated (SWC 35-40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (PN) of winter wheat. Under good SWC, PN of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. PN of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although PN was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of PN was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution. and H. Xu ... [et al.].