Low temperature has negative effects on apple photosynthesis by inhibiting the accumulations of photosynthates and nitrogen. The interactive effects of low temperature and nitrogen application on photosynthetic parameters and the absorption and distribution of carbon and nitrogen in different organs were assessed to investigate if nitrogen application can relieve the low-temperature stress on gas exchange and the accumulations of carbon and nitrogen inside the apple plants. No matter under normal or low-temperature conditions, nitrogen application both improved the photosynthetic parameters including net photosynthetic rate, intercellular CO2 concentration, and quantum yield of regulated energy dissipation of PSII as well as the absorption of carbon and nitrogen in roots, stems, and leaves. Thus, we conclude that nitrogen application can relieve the effects of low-temperature stress on photosynthesis and is of benefit for the accumulations of carbon and nitrogen in multiple organs of apple seedlings.
Poplars (Populus spp.) are widely used in the pulp and paper industry and as bioenergy resources. Poplars require a large amount of water for biomass accumulation and lack of water is a limiting factor for poplar growth. Arbuscular mycorrhizal (AM) fungi have been previously reported to afford some plant species with greater resistance to drought stress. However, the effects of AM fungi on hybrid poplar under drought stress and recovery have not been studied. The main aim of this study was to evaluate the effects of the AM fungus, Rhizophagus irregularis, on the growth, water status, chlorophyll (Chl) content and fluorescence, and photosynthesis of poplar seedlings. The experiment was divided into three stages. At each stage of the experiment, the seedlings were subjected to a different watering regime: well-watered (prior stress), drought, and then rewatering (recovery). Measurements were taken at the end of each stage of the experiment. The results showed that mycorrhizal plants had a higher net photosynthetic rate and Chl fluorescence compared with nonmycorrhizal plants, regardless of the stage. Mycorrhizal and nonmycorrhizal plants showed different responses to drought stress: mycorrhizal plants showed better water-use efficiency and water uptake under drought stress conditions. In general, the poplar seedlings that formed the AM symbiosis with R. irregularis showed enhanced growth and reduced loss of biomass during the drought stress compared with the nonmycorrhizal seedlings., T. Liu, M. Sheng, C. Y. Wang, H. Chen, Z. Li, M. Tang., and Obsahuje bibliografii
Anthropogenic activities are changing global precipitation regimes and result in many middle latitude arid and semiarid regions experiencing less precipitation and more extreme weather events. However, little is known about the response of active ingredient accumulation in the medicinal herb Plantago depressa Willd. Therefore, we carried out a greenhouse experiment in order to study effect of control (CK, normal water supply equal to 309 mm per four months), -30 (-WS) and +30% (+WS) of the control water supply on the photosynthesis (PN), C/N ratio, and plantamajoside accumulation in P. depressa. Our results showed that compared with the-WS and CK treatments, the +WS treatment significantly enhanced biomass, the C/N ratio, plantamajoside concentration, yield in shoots and roots, and PN, but declined the N concentration in shoots and roots. The plantamajoside concentration was positively correlated with PN, the soluble sugar content, and the C/N ratio, but negatively correlated with the N concentration. Our results suggested that, under experimental conditions, +WS increased the C/N ratio and promoted the plantamajoside accumulation of P. depressa., Z. Li, W. Bai, L. Zhang, L. Li., and Obsahuje bibliografii
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m-2 s-1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m-2 s-1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m-2 s-1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m-2 s-1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21-32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m-2 s-1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition., H. Li, Q. Zheng, J. Zhang, B. Li, Z. Li., and Obsahuje bibliografii
The study investigated the effects of different CaCl2 concentrations (2, 5, and 10 mM) on photosynthetic enzymatic activities, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Plants were sprayed with either CaCl2 or distilled water until run-off. Irrigation was then withheld to induce drought stress. The strength of drought stress was evaluated by relative leaf water content and soil water content, which was 27.3 and 9.5% on day 0 and day 12, respectively. Drought stress decreased activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, chlorophyll (a+b) content, net photosynthetic rate, stomatal conductance, transpiration rate, electron transport rate, the maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII in tung tree seedlings. The CaCl2 pretreatments alleviated the negative effect of drought stress to some degree on all the parameters mentioned above., Z. Li, X. F. Tan, K. Lu, Z. M. Liu, L. L. Wu., and Obsahuje bibliografii