Accumulating evidence indicates that hypertension is associated with "ion channel remodeling" of vascular smooth muscle cells (VSMCs). The objective of this study was to determine the effects of exercise intensity/volume on hypertension-associated changes in large-conductance Ca2+-activated K+ (BKCa) channels in mesenteric arteries (MAs) from spontaneously hypertensive rats (SHR). Male SHRs were randomly assigned to three groups: a low-intensity aerobic exercise group (SHR-L: 14 m/min), a moderate-intensity aerobic exercise group (SHR-M: 20 m/min), and a sedentary group (SHR). Age-matched Wistar-Kyoto rats (WKYs) were used as normotensive controls. Exercise groups completed an 8-week exercise program. Elevation of the α and β1 proteins was unequal in MA myocytes from SHRs, with the β1 subunit increasing more than the α subunit. BKCa contribution to vascular tone regulation was higher in the myocytes and arteries of SHRs compared to WKYs. SHR BKCa channel subunit protein expression, β1/α ratio, whole cell current density and single-channel open probability was also increased compared with WKYs. Aerobic exercise lowered systemic blood pressure and normalized hypertension-associated BKCa alterations to normotensive control levels in the SHRs. These effects were more pronounced in the moderate-intensity group than in the low-intensity group. There is a dose-effect for aerobic exercise training in the range of low to moderate-intensity and accompanying volume for the correction of the pathological adaptation of BKCa channels in myocytes of MAs from SHR., Y. Zhang, Y. Chen, L. Zhang, N. Lu, L. Shi., and Obsahuje bibliografii
5-hydroxytryptamine (5-HT) is involved in the stress-induced alteration of colonic functions, specifically motility and secretion, but its precise mechanisms of regulation remain unclear. In the present study, we have investigated the effects of 5-HT on rat colonic mucosal secretion after acute water immersion restraint stress, as well as the underlying mechanism of this phenomenon, using short circuit current recording (ISC), real-time polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbance assays. After 2 h of water immersion restraint stress, the baseline ISC and 5-HT-induced ISC responses of the colonic mucosa were significantly increased. Pretreatment with selective 5-HT4 receptor antagonist, SB204070, inhibited the 5-HT-induced colonic ISC response by 96 % in normal rats and 91.2 % in acute-stress rats. However, pretreatment with the selective antagonist of 5-HT3 receptor, MDL72222 or Y-25130, had no obvious effect on 5-HT-induced ISC responses under either set of conditions. Total protein expression of both the mucosal 5-HT3 receptors and the 5-HT4 receptors underwent no significant changes following acute stress. Both colonic basal cAMP levels and foskolin-induced ISC responses were significantly enhanced in acute stress rats. 5-HT significantly enhanced the intracellular cAMP level via 5-HT4 receptors in the colonic mucosa from both control and stressed animals, and 5-HT-induced cAMP increase in stressed rats was not more than that in control rats. Taken together, the present results indicate that acute water immersion restraint stress enhances colonic secretory responses to 5-HT in rats, a process in which increased cellular cAMP accumulation is involved., Y. Li, L. S. Li, X. L. Zhang, Y. Zhang, J. D. Xu, J. X. Zhu., and Obsahuje bibliografii
The present study was conducted to determine the effect of exogenous application of brassinolide (BR) on Leymus chinensis grown under shade, i.e., control (100% natural light), mild shade (70% natural light), and moderate shade (50% natural light). Shade substantially enhanced the plant growth, synthesis of photosynthetic pigments, photosynthetic efficiency, and chlorophyll (Chl) fluorescence attributes of L. chinensis as compared with control. The order of increase was mild shade > moderate shade > natural light except Chl content, where the order of increase was moderate shade > mild shade > natural light. Likewise, application of BR resulted in further exacerbation of plant height, plant fresh and dry mass, but less in case of Chl and carotenoids contents, gas-exchange characteristics, and Chl fluorescence attributes. The results conclude that shade significantly enhanced plant growth through alterations in physiological attributes of L. chinensis, while, application of BR may not further improve the plant growth under shade., A. J. Yang, S. A. Anjum, L. Wang, J. X. Song, X. F. Zong, J. Lv, A. Zohaib, I. Ali, R. Yan, Y. Zhang, Y. F. Dong, S. G. Wang., and Obsahuje bibliografii
Spontaneous activity of cortical neurons exhibits alternative fluctuations of membrane potential consisting of phased depolarization called "up-state" and persistent hyperpolarization called "down-state" during slow wave sleep and anesthesia. Here, we examined the effects of sound stimuli (noise bursts) on neuronal activity by intracellular recording in vivo from the rat auditory cortex (AC). Noise bursts increased the average time in the up-state by 0.81±0.65 s (rang e, 0.27-1.74 s) related to a 10 s recording duration. The rise times of the spontaneous up-events averaged 69.41±18.04 ms (range, 40.10-119.21 ms), while those of the sound-evoked up-events were significantly shorter (p<0.001) averaging on ly 22.54±8.81 ms (range, 9.31- 45.74 ms). Sound stimulation did not influence ongoing spontaneous up-events. Our data suggest that a sound stimulus does not interfere with ongoing spontaneous neuronal activity in auditory cortex but can evoke new depolarizations in addition to the spontaneous ones., Y. Zhang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Expression quantitative trait loci (eQTL) analyses were applied in order to identify genetic factors that are relevant to the expression of a β-isoform Rubisco activase gene in maize, namely ZmRCAβ, in this study. During two years, a maize recombinant inbred line population was measured for ZmRCAβ expression levels at the grain filling stage. Based on a genetic map containing 916 molecular markers, we detected five eQTLs, namely qRCA2.1 on chromosome 2, and qRCA4.1, qRCA4.2, qRCA4.3, and qRCA4.4 on chromosome 4. These eQTLs explained the phenotypic variation ranging from 6.14% to 7.50% with the logarithm of the odd values ranging from 3.11 to 4.96. Based on the position of the eQTLs and ZmRCAβ on the chromosome, qRCA4.2 was inferred as a cis-eQTL and the remaining as a trans-eQTL, suggesting that a combination of both cis- and trans-acting elements might control ZmRCAβ expression. qRCA4.2, qRCA4.3, and qRCA4.4 were repeatedly detected during two years., Q. Sun, Y. Zhang, B. Chen, B. Jia, Z. L. Zhang, M. Cui, X. Kan, H. B. Shi, D. X. Deng, Z. T. Yin., and Obsahuje bibliografii
Endothelin-1 (ET-1) and Nerve Growth Factor (NGF) are proteins, released from cancer-ridden tissues, which cause spontaneous pain and hypersensitivity to noxious stimuli. Here we examined the electrophysiological and behavioral effects of these two agents for evidence of their interactions. Individual small-medium cultured DRG sensory neurons responded to both ET-1 (50 nM, n=6) and NGF (100 ng/ml, n=4), with increased numbers of action potentials and decreased slow K+ currents; pre-exposure to ET-1 potentiated NGF´s actions, but not vice versa. Behaviorally, single intraplantar (i.pl.) injection of low doses of ET-1 (20 pmol) or NGF (100 ng), did not increase hindpaw tactile or thermal sensitivity, but their simultaneous injections sensitized the paw to both modalities. Daily i.pl. injections of low ET-1 doses in male rats caused tactile sensitization after 21 days, and enabled further tactile and thermal sensitization from low dose NGF, in ipsilateral and contralateral hindpaws. Single injections of 100 ng NGF, without changing the paw’s tactile sensitivity by itself, acutely sensitized the ipsilateral paw to subsequent injections of low ET-1. The sensitization from repeated low ET-1 dosing and the cross-sensitization between NGF and ET-1 were both significantly greater in female than in male rats. These findings reveal a synergistic interaction between cutaneously administered low doses of NGF and ET-1, which could contribute to cancer-related pain., A. Khodorova, Y. Zhang, G. Nicol, G. Strichartz., and Seznam literatury
In previous studies, it has been shown that recombinant human neuregulin-1(rhNRG-1) is capable of improving the survival rate in animal models of doxorubicin (DOX)-induced cardiomyopathy; however, the underlying mechanism of this phenomenon remains unknown. In this study, the role of rhNRG-1 in attenuating doxorubicin-induce apoptosis is confirmed. Neonatal rat ventricular myocytes (NRVMs) were subjected to various treatments, in order to both induce apoptosis and determine the effects of rhNRG-1 on the process. Activation of apoptosis was determined by observing increases in the protein levels of classic apoptosis markers (including cleaved caspase-3, cytochrome c, Bcl-2, BAX and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining). The activation of Akt was detected by means of western blot analysis. The study results showed that doxorubicin increased the number of TUNEL positive cells, as well as the protein levels of cleaved caspase-3 and cytochrome c, and reduced the ratio of Bcl-2/Bax. However, all of these effects were markedly antagonized by pretreament with rhNRG-1. It was then further demonstrated that the effects of rhNRG-1 could be blocked by the phosphoinositole-3-kinase inhibitor LY294002, indicating the involvement of the Akt process in mediating the process. RhNRG-1 is a potent inhibitor of doxorubicin-induced apoptosis, which acts through the PI3K-Akt pathway. RhNRG-1 is a novel therapeutic drug which may be effective in preventing further damage from occurring in DOX-induced damaged myocardium., T. An, ... [et al.]., and Obsahuje seznam literatury
This paper investigates the stochastic stability of fuzzy neural networks with Markovian jumping parameters and mixed delays under impulsive per- turbations in mean square. The mixed delays consist of time-varying delay and continuously distributed delay. By employing a new Lyapunov-Krasovskii functional, linear convex combination technique, a novel reciprocal convex lemma and the free-weight matrix method, two novel sufficient conditions are derived to ensure the stochastic asymptotic stability of the equilibrium point of the considered networks in mean square. The proposed results, which are expressed in terms of linear matrix inequalities, can be easily checked via Matlab LMI Toolbox. Finally, two numerical examples are given to demonstrate the effectiveness and less conservativeness of our theoretical results over existing literature.
Apolipoprotein J (clusterin) is a component of high-density lipoproteins, the high level of which is reversely correlated with the risk of coronary heart disease. In addition, it exerts anti-inflammatory and anti-apoptotic effects on endothelial cells and inhibits smooth muscle cell migration and proliferation, indicating that it may play a protective role in cardiovascular disease. However, the exact mechanisms by which this occurs remain unclear. This study aimed to clarify these underlying protective mechanisms by researching the inhibitory effects of apolipoprotein J via the NOD-like receptor protein 3 pathway on the inflammation induced by cholesterol crystals in THP‑1 macrophages. In culture, THP-1 macrophages were infected with adenoviral vectors containing apolipoprotein J genes and subsequently treated with cholesterol crystals. The inflammatory cytokines interleukin‑1β, interleukin 18 and tumour necrosis factor α were quantitatively measured with ELISA kits. NOD-like receptor protein 3, cysteinyl aspartate specific proteinase 1 and interleukin 1β were evaluated by Western blot and PCR analysis. As a result, apolipoprotein J expression was found to remarkably decrease the levels of inflammatory cytokines, including tumour necrosis factor α, interleukin 18 and interleukin 1β, secreted by THP‑1 macrophages. It was also found capable of inhibiting the levels of NOD-like receptor protein 3, cysteinyl aspartate-specific proteinase 1 and interleukin 1β both at the protein and mRNA levels. In the current study, we revealed that over-expression of apolipoprotein J attenuated the inflammation induced by cholesterol crystals through inhibition of the NOD-like receptor protein 3 inflammasome pathway.