The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte-CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs., J. Ždychová, S. Čejsková, I. Králová Lesná, A. Králová, J. Malušková, L. Janoušek, L. Kazdová., and Obsahuje bibliografii
Atherosclerosis is a degenerative inflammatory disease of the vascular wall, which is characterized by the formation of atherosclerotic plaques that contain lipids, activated smooth muscle cells, immune cells, foam cells, a necrotic core and calcified sites. In atherosclerosis pathology, monocytes and macrophages play the most important role by accumulating redundant LDL particles in their oxidized form and producing proinflammatory cytokines. Atherosclerotic plaque macrophages reveal distinct phenotypes that are distinguished into M1 (proinflammatory) and M2 (anti-inflammatory) macrophages. Numerous environmental signals (cytokines, microbial cell molecules) that are received by macrophages drive their polarization, but it must be determined whether this classification reflects different macrophage subtypes or plasticity and phenotypic tissue changes, but the balance between subsets is crucial. M1 macrophages are dominant in symptomatic atherosclerotic plaques, while M2 macrophages are more frequent in asymptomatic plaques. Nevertheless, a positive correlation of both M1 and M2 macrophages with atherosclerotic lesion severity was also observed., A. Králová, I. Králová lesná, R. Poledne., and Obsahuje bibliografii
Atherosclerosis pathology is the interplay between high intrav ascular LDL particle concentration and monocyte/ macrophage presence within the sub -endothelial space of the artery. In this project, phenotypes of macrophages connected with subclinical inflammation in adipose tissue of living kidney donors were studied. Samples of subcutaneous adipose tissue of living kidney donors (n=36) were exposed to collagenase. Stromal vascular fraction (SVF) was eluted from the samples, then labeled with monoclonal antibodies (anti- CD14 and anti -calprotectin), conjugated with fluo rochromes and analy zed by flow cytometry. The positive correlation between the number of total macrophages and calprotectin- positive macrophages with BMI in the subcutaneous adipose tissue of postmenopausal women was demonstrated (p<0.05; R=0.43 and p<0.01 ; R=0.60), whereas no positive correlation in premenopausal women and men was shown. In conclusion, we documented a significant effect of BMI increase on the presence of total macrophages in adipose tissue of postmenopausal women, in contrast to premenopausal women. This difference was much more pronounced when proinflammatory macrophages with membrane- bound calprotectin were analyzed., A. Králová, I. Králová Lesná, J. Froněk, S. Čejková, A. Sekerková, L. Janoušek, F. Thieme, I. Stříž, J. Ždychová, R. Poledne., and Obsahuje bibliografii
Inflammatory changes, both in the arterial wall and adipose tissue, play a crucial role in the development of atherosclerosis. We measured the gene expression of tumor necrosis factor-alpha (TNFα), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6) in adipose tissue (AT) of living kidney donors (LKD) and patients with peripheral arterial disease (PAD). Quantitative polymerase chain reaction (qPCR) and flow cytometry analyses were performed in subcutaneous (SAT), visceral (VAT), and perivascular adipose tissue (PVAT). Data of PAD patients showed significantly higher expression in VAT in all three genes (TNFα 5-fold, p<0.05; MCP-1 3.6-fold, p<0.05; IL-6 18.8-fold, p<0.001). The differences in PVAT and SAT were less significant. Total body pro-inflammatory status was documented by higher TNFα concentration in patients (4.86± 1.4 pg/ml) compared to LKDs (2.14±0.9 pg/ml; p<0.001), as was hsCRP (11.8±7.0 in PAD; 1.5±0.48 in LKDs; p=0.017). We found no age-dependent relationship between gene expression vs. TNFα and hsCRP concentrations in both compared groups. No effect of the atherosclerosis score on gene expression and circulating inflammatory markers within the PAD group was observed. Our results suggest that the AT of PAD patients infiltrated with macrophages produces more cytokines involved in the development of inflammation and atherosclerosis., S. Čejková, I. Králová Lesná, J. Froněk, L. Janoušek, A. Králová, J. Ždychová, R. Poledne., and Obsahuje bibliografii