We assessed the effect of the previously uncovered gap junctio n protein alpha 8 (Gja8) mutation present in spontaneously hypertensive rat - dominant cataract (SHR - Dca ) strain on blood pressure, metabolic profile, and heart and renal transcriptomes. Adult, standard chow-fed male rats of SHR and SHR - Dca strains were used. We found a significant, consistent 10-15 mmHg decrease in both systolic and diastolic blood pressures in SHR - Dca compared with SHR (P<0.01 and P<0.05 , respectively; repeated measures analysis of variance (ANOVA)). With immunohistochemistry, we were able to localize Gja8 in heart, kidney, aorta, liver, and lungs, mostly in endothelium; with no differences in expression between strains. SHR - Dca rats showed decreased body weight, high-density lipoprotein cholesterol concentrations and basa l insulin sensitivity in muscle. There were 21 transc ripts common to the sets of 303 transcripts in kidney and 487 in heart showing >1.2-fold difference in expression between SHR and SHR - Dca. Tumor necrosis factor was the most significant upstream regulato r and glial cell-derived neurotrophic factor family ligand-receptor interactions was the common enriched and downregulated canonical pathway both in heart and kidney of SHR - Dca. The connexin 50 mutation L7Q lowers blood pressure in the SHR - Dca strain, decr eases high-density lipoprotein cholesterol, and leads to substantial transcriptome changes in heart and kidney., O. Šeda, F. Liška, M. Pravenec, Z. Vernerová, L. Kazdová, D. Křenová, V. Zídek, L. Šedová, M. Krupková, V. Křen., and Obsahuje bibliografii
Increased levels of plasma cysteine predispose to obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed mutated Folr1 (folate receptor 1) on chromosome 1 as a quantitative trait gene associated with reduced folate levels, hypercysteinemia and metabolic disturbances. The Folr1 gene is closely linked to the Folh1 (folate hydrolase 1) gene which codes for an enzyme involved in the hydrolysis of dietary polyglutamyl folates in the intestine. In the current study, we obtained evidence that Folh1 mRNA of the BN (Brown Norway) origin is weakly but significantly expressed in the small intestine. Next we analyzed the effects of the Folh1 alleles on folate and sulfur amino acid levels and consecutively on glucose and lipid metabolism using SHR-1 congenic sublines harboring either Folr1 BN and Folh1 SHR alleles or Folr1 SHR and Folh1 BN alleles. Both congenic sublines when compared to SHR controls, exhibited significantly reduced folate clearance and lower plasma cysteine and homocysteine levels which was associated with significantly decreased serum glucose and insulin concentrations and reduced adiposity. These results strongly suggest that, in addition to Folr1 , the Folh1 gene also plays an important role in folate and sulfur amino acid levels and affects glucose and lipid metabolism in the rat., J. Šilhavý, J. Krijt, J. Sokolová, V. Zídek, P. Mlejnek, M. Šimáková, V. Škop, J. Trnovská, O. Oliyarnyk, I. Marková, M. Hüttl, H. Malínská, L. Kazdová, F. Liška, V. Kožich, M. Pravenec., and Obsahuje bibliografii
Metabolic syndrome is a prevalent, complex condition. The search for genetic determinants of the syndrome is currently undergoing a paradigm enhancement by adding systems genetics approaches to association studies. We summarize the current evidence on relations between an emergent new candidate, zinc finger and BTB domain containing 16 (ZBTB16) transcription factor and the major components constituting the metabolic syndrome. Information stemming from studies on experimental models with altered Zbtb16 expression clearly shows its effect on adipogenesis, cardiac hypertrophy and fibrosis, lipid levels and insulin sensitivity. Based on current evidence, we provide a network view of relations between ZBTB16 and hallmarks of metabolic syndrome in order to elucidate the potential functional links involving the ZBTB16 node. Many of the identified genes interconnecting ZBTB16 with all or most metabolic syndrome components are linked to immune function, inflammation or oxidative stress. In summary, ZBTB16 represents a promising pleiotropic candidate node for metabolic syndrome., O. Šeda, L. Šedová, J. Včelák, M. Vaňková, F. Liška, B. Bendlová., and Obsahuje bibliografii