Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu2+ induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern., R. Večeřa, N. Škottová, P. Váňa, L. Kazdová, Z. Chmela, Z. Švagera, D. Walterová, J. Ulrichová, V. Šimánek., and Obsahuje bibliografii
Silymarin, a mixture of flavonolignans from medicinal plant Silybum marianum, is used in supportive treatment of liver diseases of different etiology due to its hepatoprotective activity, which is considered to involve antioxidative and the membrane stabilizing effects. The liver plays an important role in regulation of metabolism of plasma lipoproteins, and liver injury is often reflected as a secondary dyslipoproteinaemia, which may lead to the development of atherosclerosis, particularly when associated with hypercholesterolaemia. This review summarizes the experimental evidence indicating that silymarin-induced protection of liver functions may be of benefit with regard to liver lipid metabolism related to the regulation of plasma lipoproteins. Moreover, some data suggest that silymarin could have a direct effect on liver cholesterol metabolism by inhibiting cholesterol biosynthesis. It is proposed that silymarin deserves to be studied as a potential hypocholesterolaemic agent.
The effect of chronic hydrocortisone administration (0.5 mg/kg) on the liver and plasma lipid content was assessed in Wistar rats. It was found after that the liver cholesterol content was significantly increased 6 months of hydrocortisone treatment. At the same time, the distribution of liver phospholipid fractions was altered. The fatty acid composition of liver lipids showed a significant increase of 22:6 n-3. Decreased levels of cholesterol and LDL-cholesterol were found in the plasma of the hydrocortisone-treated rats.