We hypothesized that decreased stomatal conductance (gs) at elevated CO2 might decrease transpiration (E), increase leaf water potential (ΨW), and thereby protect net photosynthesis rate (PN) from heat damage in maize (Zea mays L) seedlings. To separate long-term effects of elevated CO2, plants grew at either ambient CO2 or elevated CO2. During high-temperature treatment (HT) at 45°C for 15 min, leaves were exposed either to ambient CO2 (380 μmol mol-1) or to elevated CO2 (560 μmol mol-1). HT reduced PN by 25 to 38% across four CO2 combinations. However, the gs and E did not differ among all CO2 treatments during HT. After returning the leaf temperature to 35°C within 30 min, gs and E were the same or higher than the initial values. Leaf water potential (ΨW) was slightly lower at ambient CO2, but not at elevated CO2. This study highlighted that elevated CO2 failed in protecting PN from 45°C via decreasing gs and ΨW., M. N. Qu, J. A. Bunce, Z. S. Shi., and Obsahuje bibliografii
Commercial chambers for in vivo gas exchange are usually designed to measure on vascular plants, but not on cryptogams and other organisms forming biological soil crusts (BSCs). We have therefore designed two versions of a chamber with different volumes for determining CO2 exchange with a portable photosynthesis system, for three main purposes: (1) to measure in situ CO2 exchange on soils covered by BSCs with minimal physical and microenvironmental disturbance; (2) to acquire CO2-exchange measurements comparable with the most widely employed systems and methodologies; and (3) to monitor CO2 exchange over time. Different configurations were tested in the two versions of the chamber and fluxes were compared to those measured by four reference commercial chambers: three attached to two respirometers, and a conifer chamber attached to a portable photosynthesis system. Most comparisons were done on biologically crusted soil samples. When using devices in a closed system, fluxes were higher and the relationships to the reference chambers were weaker. Nevertheless, high correlations between our chamber operating in open system and measurements of commercial respiration and photosynthetic chambers were found in all cases (R2 > 0.9), indicating the suitability of the chamber designed for in situ measurements of CO2 gas exchange on BSCs., M. Ladrón De Guevara, R. Lázaro, J. L. Quero, S. Chamizo, F. Domingo., and Obsahuje bibliografii
Walnut (Juglans regia L.) plantlets were incubated during micropropagation in standard vessels (quasi confmed vessels) or in aerated vessels flushed with 360 or 20 000 cm^(C02) under irradiances of 70 (LI) and 250 (HI) pmol m"^ s'*. Plantlet morphology was strongly affected by the environment; leaf surface was increased, but shoot elongation and number of stems were reduced after increasing the irradiance of culture. Gross photosynthesis (Pq) capacity measured by using the •®02 isotope and mass-spectrometry techniques was increased by increasing photosynthetic photon flux (PPF) and CO2 concentration. Plantlets exhibited a potential for photorespiratory activity and Mehler-type reaction and a high rate of mitochondrial respiration in all vessel types and irradiances. When a long-term HI was applied, gas exchange rates (Pq and O2 uptake) were reduced in most of the vessel and PPF conditions, except in quasi confmed vessels. Under all the growth conditions, net photosynthetic rate (P^) was zero or slightly positive and the dry matter accumulation was very similar. Changes in O2 exchange, growth rate or enzyme activities linked to carbon fixation that were induced by changes in PFD and CO2 concentration showed that the photosynthetic characteristics of plantlets were typical for hetero-mixotrophic tissues.
Tropospheric ozone (O3) decreases photosynthesis, growth, and yield of crop plants, while elevated carbon dioxide (CO2) has the opposite effect. The net photosynthetic rate (PN), dark respiration rate (RD), and ascorbic acid content of rice leaves were examined under combinations of O3 (0, 0.1, or 0.3 cm3 m-3, expressed as O0, O0.1, O0.3, respectively) and CO2 (400 or 800 cm3 m-3, expressed as C400 or C800, respectively). The PN declined immediately after O3 fumigation, and was larger under O0.3 than under O0.1. When C800 was combined with the O3, PN was unaffected by O0.1 and there was an approximately 20 % decrease when the rice leaves were exposed to O0.3 for 3 h. The depression of stomatal conductance (g s) observed under O0.1 was accelerated by C800, and that under O0.3 did not change because the decline under O0.3 was too large. Excluding the stomatal effect, the mesophyll PN was suppressed only by O0.3, but was substantially ameliorated when C800 was combined. Ozone fumigation boosted the RD value, whereas C800 suppressed it. An appreciable reduction of ascorbic acid occurred when the leaves were fumigated with O0.3, but the reduction was partially ameliorated by C800. The degree of visible leaf symptoms coincided with the effect of the interaction between O3 and CO2 on PN. The amelioration of O3 injury by elevated CO2 was largely attributed to the restriction of O3 intake by the leaves with stomatal closure, and partly to the maintenance of the scavenge system for reactive oxygen species that entered the leaf mesophyll, as well as the promotion of the PN. and K. Imai, K. Kobori.
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m-3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m-3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (PN), maximum (Fv/Fm) and operating (Fq'/Fm') quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m-2 s-1 PPFD (Fv'/Fm') for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited PN also had a severely damaged PSII. The
PN of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq'/Fm' of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction. and H. Kobayakawa, K. Imai.
Water and nitrogen (N) deficiency are two major constraints limiting the yield and quality of many oilseed crops worldwide. This study was designed to assess the response of Camelina sativa (L.) Crantz to the availability of N and water resources on photosynthesis and yield parameters. All the measured variables, which included plant height, root and shoot dry matter, root:shoot ratio, xylem pressure potential (XPP), yield components, photosynthetic parameters, and instantaneous water-use efficiency (WUE) were remarkably influenced by water and nitrogen supply. Net photosynthetic rate (PN) and yield components were significantly decreased more by water deficit than by N deficiency. XPP, stomatal conductance (gs), and intercellular CO2 concentration (C i) decreased substantially as the water deficit increased irrespective of the level of N application. WUE at the high N supply [100 and 150 kg(N) ha-1] dropped in a large degree as the increased water deficit due to a larger decrease in PN than transpiration rate (E). The results of this study suggest that the regulative capacity of N supply on photosynthetic and plant growth response is significantly affected by soil water status and C. sativa is more sensitive to water deficit than N supply. and X. Pan ... [et al.].
Independent short-term effects of photosynthetic photon flux density (PPFD) of 50-400 µmol m-2 s-1, external CO2 concentration (C a) of 85-850 cm3 m-3, and vapor pressure deficit (VPD) of 0.9-2.2 kPa on net photosynthetic rate (PN), stomatal conductance (gs), leaf internal CO2 concentration (Ci), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 µmol m-2 s-1 increased PN by about 50 %, but further increases in PPFD up to 1 500 µmol m-2 s-1 had no effect on PN. Increasing Ca significantly increased PN and Ci while gs and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced PN, but the slight decrease in gs and the slight increase in Ci with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in PN. The unusually small response of gs to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (gs, Ci, E) among the three cacao genotypes under any measurement conditions. and F. C. Baligar ... [et al.].
Responses of drought-tolerant (DT) and drought-susceptible (DS) pot-grown groundnut (Arachis hypogaea L.) varieties to changes in leaf relative water content (RWC) were studied. Water stress (WS) was imposed on 30-day-old plants for 2 weeks. Leaf RWC decreased significantly under WS conditions with simultaneous decrease in net photosynthetic rate (PN) and stomatal conductance (gs). Even though no significant difference was observed between DT and DS varieties with regard to RWC, DT varieties were able to maintain significantly higher PN than DS varieties. Higher values of water use efficiency (WUE) were also observed in DT varieties during WS conditions. The decline in PN due to WS could be attributed to both reduction in g s (i.e. stomatal limitation) and to reduction in chlorophyll content (Chl). No significant difference in leaf area index (LAI) was found between DT and DS types and LAI was not reduced by WS. Significant differences were found among the studied groundnut varieties, but not between DT and DS types, in terms of root, aboveground, and total dry mass. These growth parameters significantly decreased under WS conditions. Based on the results, a sequence of physiological responses in groundnut crop subjected to WS was postulated. and P. R. Jeyaramraja, S. S. Thushara.