Commercial chambers for in vivo gas exchange are usually designed to measure on vascular plants, but not on cryptogams and other organisms forming biological soil crusts (BSCs). We have therefore designed two versions of a chamber with different volumes for determining CO2 exchange with a portable photosynthesis system, for three main purposes: (1) to measure in situ CO2 exchange on soils covered by BSCs with minimal physical and microenvironmental disturbance; (2) to acquire CO2-exchange measurements comparable with the most widely employed systems and methodologies; and (3) to monitor CO2 exchange over time. Different configurations were tested in the two versions of the chamber and fluxes were compared to those measured by four reference commercial chambers: three attached to two respirometers, and a conifer chamber attached to a portable photosynthesis system. Most comparisons were done on biologically crusted soil samples. When using devices in a closed system, fluxes were higher and the relationships to the reference chambers were weaker. Nevertheless, high correlations between our chamber operating in open system and measurements of commercial respiration and photosynthetic chambers were found in all cases (R2 > 0.9), indicating the suitability of the chamber designed for in situ measurements of CO2 gas exchange on BSCs., M. Ladrón De Guevara, R. Lázaro, J. L. Quero, S. Chamizo, F. Domingo., and Obsahuje bibliografii
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000-2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (Rs), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were -3.240 and 1.903 μmol m-2 s-1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum Rs were 1.470 and 0.226 μmol(CO2) m-2 s-1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than Rs, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type. and J. Balogh ... [et al.].
The goal of this study was to evaluate the effect of products from a municipal wastewater treatment plant on the H2O and CO2 effluxes from two soils. The net H2O and CO2 effluxes were measured at the surface of nine beds with two different soils (Cambisol and Arenosol) and two crops (maize or vegetables). Soils in some beds were amended with stabilized sewage sludge (bed with Cambisol and maize) or composted sewage sludge (two beds with Cambisol and both crops) or were irrigated with treated wastewater (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). Remaining beds were irrigated with tap water (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). While stabilized and composted sewage sludge positively affected the CO2 emission, the effect of treated wastewater was not confirmed. Different treatments had negligible effect on the water efflux, which was mainly affected by the plant canopy that influence the temperature of the soil surface. Statistical analyses showed that trends of the CO2 efflux with respect to various scenarios measured on different days changed during the season. No significant correlations were found between the average H2O and CO2 effluxes and measured soil properties.