Commercial chambers for in vivo gas exchange are usually designed to measure on vascular plants, but not on cryptogams and other organisms forming biological soil crusts (BSCs). We have therefore designed two versions of a chamber with different volumes for determining CO2 exchange with a portable photosynthesis system, for three main purposes: (1) to measure in situ CO2 exchange on soils covered by BSCs with minimal physical and microenvironmental disturbance; (2) to acquire CO2-exchange measurements comparable with the most widely employed systems and methodologies; and (3) to monitor CO2 exchange over time. Different configurations were tested in the two versions of the chamber and fluxes were compared to those measured by four reference commercial chambers: three attached to two respirometers, and a conifer chamber attached to a portable photosynthesis system. Most comparisons were done on biologically crusted soil samples. When using devices in a closed system, fluxes were higher and the relationships to the reference chambers were weaker. Nevertheless, high correlations between our chamber operating in open system and measurements of commercial respiration and photosynthetic chambers were found in all cases (R2 > 0.9), indicating the suitability of the chamber designed for in situ measurements of CO2 gas exchange on BSCs., M. Ladrón De Guevara, R. Lázaro, J. L. Quero, S. Chamizo, F. Domingo., and Obsahuje bibliografii
Twelve randomly chosen Stipa tenacissima L. individuals were grouped into three tussock size classes, small (ST), medium (MT), and large (LT) with 5.6±0.8, 34.1±4.2, and 631.9±85.8 g of dry green foliar matter, respectively, in three plots with different S. tenacissima cover. Instantaneous (WUEi) and long-term (WUEl) water-use efficiencies were measured in two seasons of contrasting volumetric soil water content (early winter 21.0±0.8 % and summer 5.8±0.3 %). Maximum photochemical efficiency of photosystem 2 and stomatal conductance in summer assessed the extent of water and irradiance stress in tussocks of different size. WUEi was lower in MT and ST “water spender” strategies than in LT during the high water-availability season. In summer net photosynthetic rate and WUEi were higher and photoinhibition was lower in LT than in MT and ST. Significant spatial variability was found in WUEi. Water uptake was competitive in stands with denser alpha grass and more water availability in summer, reducing their WUEi. However, WUEl showed a rising tendency when water became scarce. Thus it is important to explicitly account for plant size in ecophysiological studies, which must be combined with demographic information when estimating functional processes at stand level in sequential scaling procedures. and D. A. Ramírez ... [et al.].
Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, FP >10 µmol m-2 s-1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on FP to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. -1.75 and -0.60 µmol m-2 s-1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m-2 s-1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 µmol m-2 s-1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing-rather than amount-of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than FP, the model applied here failed to describe daytime carbon exchange only as a function of FP and could not be used over most of the year to fill gaps in the data. and P. Serrano-Ortiz ... [et al.].