To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m-3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m-3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (PN), maximum (Fv/Fm) and operating (Fq'/Fm') quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m-2 s-1 PPFD (Fv'/Fm') for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited PN also had a severely damaged PSII. The
PN of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq'/Fm' of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction. and H. Kobayakawa, K. Imai.