Male rats received estradiol benzoate in a long acting microcrystalline suspension (1 mg/rat i.m., twice a week), methylene blue (MB) 0.5 % in the food and the combination of estradiol and MB. After three weeks, MB partially inhibited the growth response of the anterior pituitary to estradiol and it partially inhibited the increase of cAMP content in anterior pituitary. The increase of anterior pituitary cGMP content was not modified by MB, neither the ratio cAMP/cGMP in the anterior pituitary which, however, decreased after estradiol. This decrease was not modified by MB. On the other hand, the prolactin (PRL) increase in the blood after estradiol was inhibited by MB, although the prolactin content in the anterior pituitary was not. Methylene blue alone did not change blood prolactin concentration, but it unexpectedly elevated blood thyroxine levels and this effect was partially inhibited by simultaneous estradiol treatment.
The general population is potentially exposed to many chemicals that can affect the endocrine system. These substances are called endocrine disruptors (EDs), and among them bisphenol A (BPA) is one of the most widely used and well studied. Nonetheless, there are still no data on simultaneous measurements of various EDs along with steroids directly in the seminal fluid, where deleterious effects of EDs on spermatogenesis and steroidogenesis are assumed. We determined levels of BPA and 3 estrogens using LC-MS/MS in the plasma and seminal plasma of 174 men with different degrees of infertility. These men were divided according their spermiogram values into 4 groups: (1) healthy men, and (2) slightly, (3) moderate, and (4) severely infertile men. Estradiol levels differed across the groups and body fluids. Slightly infertile men have significantly higher BPA plasma and seminal plasma levels in comparison with healthy men (p<0.05 and p<0.01, respectively). Furthermore, seminal BPA, but not plasma BPA, was negatively associated with sperm concentration and total sperm count (-0.27; p<0.001 and -0.24; p<0.01, respectively). These findings point to the importance of seminal plasma in BPA research. Overall, a disruption of estrogen metabolism was observed together with a weak but significant impact of BPA on sperm count and concentration., J. Vitku, L. Sosvorova, T. Chlupacova, R. Hampl, M. Hill, V. Sobotka, J. Heracek, M. Bicikova, L. Starka., and Obsahuje bibliografii
In three experiments (2 on famales,l on males),we determined the blood flow in the tibia and the distal part of the femur, together with cardiac output (by meansi of 85Sr-microspheres),tibial bone density and tibial ash weight related to bone volume. We found that 1) the bone blood flow always fell significantly after oestradiol benzoate, 2) no change occurred after norethisterone in doses corresponding to those of oestradiol benzoate, but the blood flow showed a tendency to fall after doses one order higher (it decreased significantly in one case only), 3) the density of the tibia and tibial ash weight related to bone volume rose nonsignificantly after oestradiol benzoate, but fell (mostly statistically significantly) after norethisterone. The lowering of the bone mineral indexes in rat bones after norethisterone is a surprising and potentially significant finding requiring further verification.
The effects of 8-days treatment with 17α-estradiol (33.3 μg/kg) and progesterone (1.7 mg/kg) on plasma lipids and fatty acid composition of plasma phospholipids were examined in intact (INT) and bilaterally common carotid arteries occluded (BCO) male Wistar rats. Significant decrease of triglyceride level was found in BCO rats after the estradiol treatment. Both hormones elevated proportion of 18:1n-7 fatty acid in INT, but they failed to have such an effect in BCO. Estradiol increased 22:5n-3 and total n-3 polyunsaturated fatty acids (PUFA) in intact, and decreased 18:2n-6 in BCO rats. Significantly lower level of total n-3 was found in progesterone-treated than in estradiol-treated BCO rats. Given that n-3 PUFA have many beneficial effects on cell and tissue function, while n-6 PUFA have mostly the opposite effects, estradiol, rather than progesterone, was seen to improve plasma lipids and phospholipids FA profiles in INT and BCO animals. Estradiol significantly elevated the estimated activity of Δ9-desaturases and progesterone of Δ5-desaturase in BCO group, with no effects in INT rats., S. Petrović, M. Takić, A. Arsić, V. Vučić, D. Drakulić, M. Milošević, M. Glibetić., and Obsahuje bibliografii
The activity of mitochondrial superoxide dismutase (MnSOD) and cytosol superoxide dismutase (CuZnSOD) was measured in corresponding subcellular fractions prepared from the thymi of intact and chronically gonadectomized (GX) rats of both sexes, as well as of GX male and female rats injected subcutaneously with a single dose of 5 mg estradiol benzoate (EB) and/or 2 mg progesterone (P). Animals were sacrificed 2 h or 24 h following hormone treatment. In the females, the activity of MnSOD in the thymus was stable during the estrous cycle and did not change after ovariectomy. Treatment of GX females with estradiol benzoate resulted 2 h later in a significant elevation of MnSOD activity, whereas 24 h later the activity returned back to control values. On the other hand, treatment of GX females with progesterone had no effect on the MnSOD activity. However, combined hormone treatment, in which EB injection preceded progesterone injection by one hour, enhanced the effect on MnSOD activity similar to that of estradiol benzoate alone. The activity of CuZnSOD in cycling rats was increased in proestrus, whereas removal of the ovaries kept the values at low diestrus and estrus levels. Contrary to MnSOD, CuZnSOD activity did not change after EB treatment of GX females, while progesterone increased the enzyme activity at 2 h and 24 h after hormone treatment. However, combined EB+P treatment proved to be ineffective. In the males, neither MnSOD nor CuZnSOD activity was affected by the removal of testes or by progesterone treatment of GX animals. Only EB injection to GX rats significantly increased CuZnSOD activity 24 h later., J. Kasapović, S.B. Pajović, S. Pejić, J.V. Martinović., and Obsahuje bibliografii
After long-lasting administration of estradiol (4—6 weeks) in the presence or absence of pertussis toxin treatment we followed up the changes in body weight and adenohypophyseal weight in rats subjected to this treatment. The most striking effect was the potentiating effect of pertussis toxin on the estradiol-induced adenohypophyseal growth reaction. Adenylyl cyclase activity in the adenohypophysis was significantly increased in the estradiol- treated group and the addition of pertussis toxin did not further increase this enzyme activity. The lipolytic activity in adipose tissue exhibited a similar response as adenohypophyseal growth. Adrenergic lipolysis stimulated by pertussis toxin was highly significantly increased in tissues of rats treated with pertussis toxin. Our results show that the estrogen-induced adenohypophyseal growth reaction is highly potentiated by the treatment of rats with pertussis toxin and that this effect is in many aspects similar to that observed in adrenergic lipolysis. It thus seems that both processes might be mediated via a pertussis toxin-sensitive G protein which is involved in inhibitory regulation of adenylyl cyclase.
Obesity increases the incidence of hypogonadism in men, and hypogonadism in turn plays a role in obesity. One of the first mechanisms proposed to explain this was a hypothesis based on the principle that obese men have higher estrogen levels, and that increased estrogens provide feedback to the hypothalamicpituitary-testicular axis, reducing the secretion of gonadotropins and leading to a decrease of overall testosterone levels. This concept has since been questioned, though never completely disproven. In this study we compared hormone levels in three groups of men with differing BMI levels (between 18-25, 25-29, and 30-39), and found correlations between lowering overall testosterone, SHBG and increased BMI. At the same time, there were no significant changes to levels of free androgens, estradiol or the gonadotropins LH and FSH. These findings are in line with the idea that estrogen production in overweight and obese men with BMI up to 39 kg/m2 does not significantly influence endocrine testicular function., Luboslav Stárka, Martin Hill, Hana Pospíšilová, Michaela Dušková., and Obsahuje bibliografii
The aim of this in vitro study was to examine the secretion activity (progesterone, 17β-estradiol and insulin-like growth factor-I) of rat ovarian fragments after molybdenum (Mo) addition. Rat ovarian fragments were incubated with ammonium molybdate (NH4)6Mo7O24.4H2O at the doses 90, 170, 330 and 500 μg.ml-1 for 24 h and compared with control group without Mo addition. Release of progesterone (P4), estradiol (17β-estradiol) and insulin-like growth factor I (IGF-I) by ovarian fragments was assessed by radioimmunoassay (RIA). Data show that P4 release by ovarian fragments was not affected by (NH4)6.Mo7O24.4H2O addition at all the doses used (90-500 μg.ml-1). However, addition of ammonium molybdate was found to cause a significant (P<0.05) dose-dependent decrease (at the doses 90, 170 and 500 μg.ml-1) in release of 17β-estradiol by ovarian fragments in comparison to control. Also, addition of ammonium molybdate significantly (P<0.05) inhibited IGF-I release at all the doses (90-500 μg.ml-1) used in the study. Results suggest ammonium molybdate induced inhibition in the release of growth factor IGF-I and its dosedependent effect on secretion of steroid hormone 17β-estradiol but not progesterone. These data contribute to new insights regarding the mechanism of action of Mo on rat ovarian functions., S. Roychoudhury, L. Detvanova, A. V. Sirotkin, R. Toman, A. Kolesarova., and Obsahuje bibliografii
The aim of present studies was to examine the interrelationships between reproductive events, age, body mass and steroid hormones in roe deer females (Capreolus capreolus). For this purpose we compared seasonal changes in body mass, blood levels of progesterone and estradiol (1) in young (1 year) and adult (2-4 years old) does and (2) in pregnant and non-pregnant animals. Monthly during 12 months all animals were weighed, blood plasma was collected, and concentration of progesterone and estradiol was analysed by RIA. Pregnant animals had significantly higher body weight, than non-pregnant ones, in November (before foetus implantation), and lower body weight in comparison with non-pregnant females in August (after parturition). In non-pregnant females high level of progesterone was observed from August (mating) up to December. Thereafter progesterone level declined up to minimum in summer months (April-July). Pregnant animals had increased progesterone level from February (foetus implantation) up to June (time after labour). In non-pregnant females, three peaks of estradiol concentration were observed in October, December and May. Pregnant animals, in contrast to non-pregnant females, had spring (January-March) gravidity-associated peak of estradiol level, but absence of summer (May) peak before parturition. Comparison of annual changes in body weight and plasma steroid hormone level in pregnant yearlings and old animals, as well as the number of offspring in these animals did not show principal age-dependent differences in these indexes, although yearlings had higher absolute progesterone (in December) and estradiol (in October and November) level than old animals. Our observations suggest significant seasonal changes in plasma progesterone and estradiol level and body weight in this species. Substantial differences in these changes in pregnant and non-pregnant animals demonstrate the involvement of steroid hormones in control of pregnancy in roe deer does. The absence of age-dependent differences in body weight and fecundity rate do not confirm previous hypothesis that age-dependent differences in metabolism and body mass can reduce fertility rate in yearlings. Moreover, our observations are the first demonstration of higher rate of steroidogenesis in young animals, than in adult females during early stages of gravidity and before embryo implantation. It is not to be excluded, that age-dependent reduction in ovarian steroid hormones level could be a cause of future infertility in old animals.
The aim of the present study was to examine the role of nutritional status, the metabolic hormone ghrelin and their interrelationships in the control of chicken hormones involved in the regulation of reproduction. For this purpose, we identified the effect of food deprivation, administration of ghrelin 1-18 and their combination on plasma levels of testosterone (T), estradiol (E), arginine-vasotocin (AVT) and growth hormone (GH) as well as the release of these hormo nes by isolated and cultured ovarian fragments. It was observed that food deprivation reduces plasma T and E and increases plasma AVT and GH levels. Food restriction also reduced the amount of E produced by isolated ovaries, but it did not affect the ovarian secretion of T and AVT. No ovarian GH secretion was detected. Ghrelin administered to ad libitum fed chickens did not affect plasma T and E levels, but it did increase plasma GH and AVT concentrations. Moreover, it partially prevented the effect of food deprivation on plasma E and AVT levels, but not on T or GH levels. Ghrelin administration to control birds promoted ovarian T, but not E or AVT release and reduced T and no other hormonal outputs in birds subjected to food restriction. Our results (1) confirmed the ovarian origin of the main plasma T and E and the extra-ovarian origin of the main blood AVT and GH; (2) showed that food deprivation-induced suppression of reproduction may be caused by suppression of T and E and the promotion of AVT and GH re lease; (3) suggest the involvement of ghrelin in control chicken E, AVT and GH output; and (4) indicates that ghrelin can either mimic or modify the effect of the intake of low calories on chicken plasma and ovarian hormones, i.e. it can mediate the effect of metabolic state on hormones involved in the control of reproduction., A. V. Sirotkin, A. H. Harrath, R. Grossmann., and Obsahuje bibliografii