Dental composite materials often contain monomers with bisphenol A (BPA) structure in their molecules, e.g. bisphenol-A glycidyl dimethacrylate (Bis-GMA). In this study, it was examined whether dental restorative composites could be a low-dose source of BPA or alternative bisphenols, which are known to have endocrine-disrupting effects. Bis-GMA-containing composites Charisma Classic (CC) and Filtek Ultimate Universal Restorative (FU) and “BPA-free” Charisma Diamond (CD) and Admira Fusion (AF) were examined. Specimens (diameter 6 mm, height 2 mm, n=5) were light-cured from one side for 20 s and stored at 37 °C in methanol which was periodically changed over 130 days to determine the kinetics of BPA release. BPA concentrations were measured using a dansyl chloride derivatization method with liquid chromatography - tandem mass spectrometry detection. The amounts of BPA were expressed in nanograms per gram of composite (ng/g). BPA release from Bis-GMA-containing CC and FU was significantly higher compared to “BPA-free” CD and AF. The highest 1-day release was detected with FU (15.4±0.8 ng/g), followed by CC (9.1±1.1 ng/g), AF (2.1±1.3 ng/g), and CD (1.6±0.8 ng/g), and the release gradually decreased over the examined period. Detected values were several orders of magnitude below the tolerable daily intake (4 µg/kg body weight/day). Alternative bisphenols were not detected. BPA was released even from “BPA-free” composites, although in significantly lower amounts than from Bis-GMA-containing composites. Despite incubation in methanol, detected amounts of BPA were substantially lower than current limits suggesting that dental composites should not pose a health risk if adequately polymerized., Markéta Šimková, Antonín Tichý, Michaela Dušková, Pavel Bradna., and Obsahuje bibliografii
The general population is potentially exposed to many chemicals that can affect the endocrine system. These substances are called endocrine disruptors (EDs), and among them bisphenol A (BPA) is one of the most widely used and well studied. Nonetheless, there are still no data on simultaneous measurements of various EDs along with steroids directly in the seminal fluid, where deleterious effects of EDs on spermatogenesis and steroidogenesis are assumed. We determined levels of BPA and 3 estrogens using LC-MS/MS in the plasma and seminal plasma of 174 men with different degrees of infertility. These men were divided according their spermiogram values into 4 groups: (1) healthy men, and (2) slightly, (3) moderate, and (4) severely infertile men. Estradiol levels differed across the groups and body fluids. Slightly infertile men have significantly higher BPA plasma and seminal plasma levels in comparison with healthy men (p<0.05 and p<0.01, respectively). Furthermore, seminal BPA, but not plasma BPA, was negatively associated with sperm concentration and total sperm count (-0.27; p<0.001 and -0.24; p<0.01, respectively). These findings point to the importance of seminal plasma in BPA research. Overall, a disruption of estrogen metabolism was observed together with a weak but significant impact of BPA on sperm count and concentration., J. Vitku, L. Sosvorova, T. Chlupacova, R. Hampl, M. Hill, V. Sobotka, J. Heracek, M. Bicikova, L. Starka., and Obsahuje bibliografii
After menopause, when estrogen levels decrease, there is room for the activity of anthropogenic substances with estrogenic properties - endocrine disruptors (EDs) - that can interfere with bone remodeling and changes in calcium-phosphate metabolism. Selected unconjugated EDs of the bisphenol group - BPA, BPS, BPF, BPAF, and the paraben family - methyl-, ethyl-, propyl-, butyl-, and benzyl-parabens - were measured by high performance liquid chromatography-tandem mass spectrometry in the plasma of 24 postmenopausal women. Parameters of calcium-phosphate metabolism and bone mineral density were assessed. Osteoporosis was classified in 14 women, and 10 women were put into the control group. The impact of EDs on calcium-phosphate metabolism was evaluated by multiple linear regressions. In women with osteoporosis, concentrations of BPA ranged from the lower limit of quantification (LLOQ) - 104 pg/ml and methyl paraben (MP) from LLOQ - 1120 pg/ml. The alternative bisphenols BPS, BPF and BPAF were all under the LLOQ. Except for MP, no further parabens were detected in the majority of samples. The multiple linear regression model found a positive association of BPA (β=0.07, p<0.05) on calcium (Ca) concentrations. Furthermore, MP (β=-0.232, p<0.05) was negatively associated with C-terminal telopeptide. These preliminary results suggest that these EDs may have effects on calcium-phosphate metabolism., J. Vitku, L. Kolatorova, L. Franekova, J. Blahos, M. Simkova, M. Duskova, T. Skodova, L. Starka., and Obsahuje bibliografii
Endocrine disruptors (EDs) are known to have harmful effects on the human endocrine system; special effort is actually given to the exposure during pregnancy. Humans are usually exposed to a mixture of EDs, which may potentiate or antagonize each other, and the combined effect may be difficult to estimate. The main phthalate monoesters monoethyl-, mono-n -butyl-, monoisobutyl-, monobenzyl-, mono-(2-ethylhexyl)-, mono-(2- ethyl-5-hydroxyhexyl)- and mono-(2-ethyl-5-oxohexyl) phthalate were determined in 18 maternal (37th week of pregnancy) and cord plasma samples using liquid chromatography-tandem mass spectrometry. Previously determined levels of selected bisphenols, parabens and steroids were also considered in this study. In cord blood, there were significantly higher mono-n-butyl phthalate levels than in maternal blood (p=0.043). The results of multiple regression models showed that maternal plasma phthalates were negatively associated with cord plasma androstenedione, testosterone and dehydroepiandrosterone and positively associated with estradiol and estriol. For estriol, a cumulative association was also observed for Σbisphenols. To the best of our knowledge, this is the first pilot study evaluating the effect of prenatal exposure by multiple EDs on newborn steroidogenesis. Our results confirmed phthalate accumulation in the fetal area and disruption of fetal steroidogenesis. This preliminary study highlights the negative impacts of in utero EDs exposure on fetal steroidogenesis., L. Kolatorova, J. Vitku, A. Vavrous, R. Hampl, K. Adamcova, M. Simkova, A. Parizek, L. Starka, M. Duskova., and Obsahuje bibliografii