Peptides ghrelin, obestatin and neuropeptide Y (NPY) play an important role in regulation of energy homeostasis, the imbalance of which is associated with eating disorders anorexia (AN) and bulimia nervosa (BN). The changes in ghrelin, obestatin and NPY plasma levels were investigated in AN and BN patients after administration of a high-carbohydrate breakfast (1604 kJ). Eight AN women (aged 25.4±1.9; BMI: 15.8±0.5), thirteen BN women (aged 22.0±1.05; BMI: 20.1±0.41) and eleven healthy women (aged 25.1±1.16; BMI: 20. 9±0.40) were recruited for the study. We demonstrated increased fasting ghrelin in AN, but not in BN patients, while fasting obestatin and NPY were increased in both AN and BN patients compared to the controls. Administration of high-carbohydrate breakfast induced a similar relative decrease in ghrelin and obestatin plasma levels in all groups, while NPY remained increa sed in postprandial period in both patient groups. Ghrelin/obestatin ratio was lower in AN and BN compared to the controls. In conclusions, increased plasma levels of fasting NPY and its unchanged levels after breakfast indicate that NPY is an important marker of eating disorders AN and BN. Different fasting ghrelin and obestatin levels in AN and BN could demonstrate their diverse functions in appetite and eating suppression., D. Sedláčková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
This study aimed to investigate the anti-fibrotic effects of ghrelin in isoproterenol (ISO)-induced myocardial fibrosis and the underlying mechanism. Sprague-Dawley rats were randomized to control, ISO, and ISO + ghrelin groups. ISO (2 mg/kg per day, subcutaneous) or vehicle was administered once daily for 7 days, then ghrelin (100 µg/kg per day, subcutaneous) was administered once daily for the next 3 weeks. Ghrelin treatment greatly improved the cardiac function of ISO-treated rats. Ghrelin also decreased plasma brain natriuretic peptide level and ratios of heart weight to body weight and left ventricular weight to body weight. Ghrelin significantly reduced myocardial collagen area and hydroxyproline content, accompanied by decreased mRNA levels of collagen type I and III. Furthermore, ghrelin increased plasma level of growth differentiation factor 15 (GDF15) and GDF15 mRNA and protein levels in heart tissues, which were significantly decreased with ISO alone. The phosphorylation of Akt at Ser473 and GSK-3β at Ser9 was decreased with ISO, and ghrelin significantly reversed the downregulation of p-Akt and p-GSK-3β. Mediated by GDF15, ghrelin could attenuate ISO-induced myocardial fibrosis via Akt-GSK-3β signaling.
The aim of this study was to look for changes in the daily profile of steroid hormones after standardized food intake. Eight young women not taking contraceptives were followed from 5:30 a.m. till 9:30 p.m. before and 1 and 2 h after eating breakfast, snack, lunch, the second snack and dinner. The differences in steroid levels before and after meals were evaluated. As expected, glucose, C-peptide and ghrelin levels changed postprandially. The steroid hormones cortisol, progesterone, pregnenolone and dehydroepiandrosterone showed a decrease after main meals, whereas testosterone and dihydrotestosterone showed no significant dependence on food intake. Estrogen levels did not exhibit a significant nycthemeral rhythm, but estradiol decreased after main meals. In our study the known nycthemeral rhythm of LH, FSH, cortisol, progesterone and pregnenolone after food intake were confirmed, but significant changes after meals were also observed in the levels of cortisol, dehydroepiandrosterone, estradiol and SHBG., B. Rácz, M. Dušková, K. Vondra, M. Šrámková, M. Hill, L. Stárka., and Obsahuje bibliografii
Obesity is linked to a wide range of serious illnesses. In addition to the important impact on the health of the individual, obesity also has a substantial impact on the economy. Disruption of physiological day-night cycles could contribute to the increased incidence of obesity. According to the American National Sleep Federation, the percentage of the people who reported a sleep duration of six hours or less increased from 12 to 37 % over ten years. Insufficient sleep leads not only to an increase of the total calorie intake but changes the meal preference in favor of palatable foods and meals with high carbohydrate content. A decrease of leptin and increase of ghrelin levels caused by sleep deficiency can also play a role. In addition to the higher caloric intake, the timing of food consumption should be taken into account. The same meal eaten during the night versus the day is associated with increased postprandial glucose and triglyceride levels. The gut microbiome has also been recently understood as an endocrine system, with links between the gut microbiome and circadian rhythm changes possibly influencing increased obesity., B. Rácz, M. Dušková, L. Stárka, V. Hainer, M. Kunešová., and Obsahuje bibliografii
The aim of the present study was to examine the role of nutritional status, the metabolic hormone ghrelin and their interrelationships in the control of chicken hormones involved in the regulation of reproduction. For this purpose, we identified the effect of food deprivation, administration of ghrelin 1-18 and their combination on plasma levels of testosterone (T), estradiol (E), arginine-vasotocin (AVT) and growth hormone (GH) as well as the release of these hormo nes by isolated and cultured ovarian fragments. It was observed that food deprivation reduces plasma T and E and increases plasma AVT and GH levels. Food restriction also reduced the amount of E produced by isolated ovaries, but it did not affect the ovarian secretion of T and AVT. No ovarian GH secretion was detected. Ghrelin administered to ad libitum fed chickens did not affect plasma T and E levels, but it did increase plasma GH and AVT concentrations. Moreover, it partially prevented the effect of food deprivation on plasma E and AVT levels, but not on T or GH levels. Ghrelin administration to control birds promoted ovarian T, but not E or AVT release and reduced T and no other hormonal outputs in birds subjected to food restriction. Our results (1) confirmed the ovarian origin of the main plasma T and E and the extra-ovarian origin of the main blood AVT and GH; (2) showed that food deprivation-induced suppression of reproduction may be caused by suppression of T and E and the promotion of AVT and GH re lease; (3) suggest the involvement of ghrelin in control chicken E, AVT and GH output; and (4) indicates that ghrelin can either mimic or modify the effect of the intake of low calories on chicken plasma and ovarian hormones, i.e. it can mediate the effect of metabolic state on hormones involved in the control of reproduction., A. V. Sirotkin, A. H. Harrath, R. Grossmann., and Obsahuje bibliografii
The functional antagonism between obestatin and ghrelin in the testis is under investigation. We investigated the ability of obestatin to counteract the inhibitory effect of ghrelin on basal and stimulated testosterone (T) secretion in vitro. Testicular strips from adult rats were incubated with 10 ng/ml and 100 ng /ml of obestatin alone, ghrelin alone and obestatin + ghrelin. Obestatin modulation of stimulated T secretion was evaluated by incubation of testicular samples with 10 ng/ml and 100 ng/ml obestatin, ghrelin and obestatin + ghrelin in the absence and presen ce of 10 IU of human chorionic gonadotrophin (hCG). T concentrations in the hCG treated groups were significantly (P<0.0001) higher than those in the control groups. Obestatin caused a significant increase in basal T secretion in a dose-dependent manner; however, obestatin at the both 10 ng /ml and 100 ng/ml significantly (P<0.0001) in creased hCG-stimulated T secretion. In contrast, ghrelin in a dose-dependent manner significantly (P<0.001) decreased both basal and hCG-induced T secretion by testicular slices. Obestatin opposed the inhibitory effect of ghrelin on T secretion under both basal and hCG-stimulated conditions at all doses tested. In conclusions, administration of obestatin was able to antagonize the inhibitory effect of ghrelin on testosterone secretion in vitro ., T. Afsar, S. Jahan, S. Razak, A. Almajwal, M. Abulmeaty, H. Wazir, A. Majeed., and Obsahuje bibliografii
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R), has been id entified in the rat and human gastrointestinal tract. Ghrelin has been proposed to play a role in gastric acid secretion. Nitric oxide (NO) was shown as a mediator in the mechanism of ghrelin action on gastric acid secretory function. However, there is a little knowledge about this topic. We have investigated the role of ghrelin in gastric acid secretion and the role of NO as a mediator. Wistar albino rats were used in this study. The pyloric sphincter was ligated through a small midline incision. By the time, saline (0.5 ml, iv) was injected to the control group, ghrelin (20 μg/kg, iv) was injected to the first experimental group, ghrelin (20 μg/kg, iv) +L-NAME (70 mg/kg, sc) was injected to the second group and L-NAME (70 mg/kg, sc) was administered to the third group. The rats were killed 3 h after pylorus ligation; gastric acid secretion, mucus content and plasma nitrite levels were measured. Exogenous ghrelin administration increased gastric acid output, mucus content and total plasma nitrite levels, while these effects of ghrelin were inhibited by applying L-NAME. We can conclude that ghrelin participates in the regulation of gastric acid secretion through NO as a mediator., H. M. Bilgin, C. Tumer, H. Diken, M. Kelle, A. Sermet., and Obsahuje bibliografii a bibliografické odkazy
Ghrelin is a new endogenous ligand for the growth hormone secretagogue receptor. It activates the release of growth hormone from the pituitary and it also participates in the regulation of energy homeostasis. The aim of the study was to characterize changes in serum ghrelin levels in obese subjects and their relationship to the serum levels of leptin and soluble leptin receptor. Eight obese patients (6 women and 2 men) with body mass index (BMI) 40.313.4 kg.m-2 and eight healthy controls (5 women and 3 men) with BMI 22.7±1.3 kg.m-2 were examined. The ghrelin serum levels (165.0±58.1 vs. 343.37±81.96; p<0.001) and soluble leptin receptor serum levels (7.25±3.44 vs. 21.80±4.99; p<0.0001) were significantly lower in obese patients. The leptin serum levels (23.45±12.90 vs. 6.41±2.96; p<0.005) were significantly higher compared to the lean subject group. In both measured groups the levels of serum leptin significantly positively correlated with BMI. We proved a significantly lower serum ghrelin levels in the group of obese patients in comparison with the control group., M. Rosická, M. Kršek, M. Matoulek, Z. Jarkovská, J. Marek, V. Justová, Z. Lacinová., and Obsahuje bibliografii
The aim of the present study was to investigate the effects of Angiotensin II (Ang II) and Arginin-Vasopressin (AVP) on contractility of non-pregnant uterus in diabetic Wistar rats and to explore whether one-week administration of Melatonin (MLT) or Ghrelin (GHR) will change the response of diabetic uterine muscle to AngII and AVP. Uterine horns, prepared by the method of isolated tissues were investigated as w ell as glycemic profile, blood pressure and body weight. The research of smooth muscle contractions was made by a new method of analysis, characterizing in detail the various phases of the myometrial activity. Differences in the development of the peptide-mediated smooth muscle contractions depending on the phase of the estrous cycle were observed. Experimental diabetes had a pronounced negative effect on force and time-parameters of AngII and AVP-stimulated uterine contractions. Administration of GHR or MLT had a beneficial effect on the glycemic status of diabetic rats and partially improved the response of uterine preparations to the peptides. The application of MLT increased both force and time-parameters of Ang II- and AVP-stimulated uterine contractions while treatment with GHR increased power characteristics and shortened contraction and relaxation of the smooth muscle process., T. Georgiev, A. Tolekova, R. Kalfin, P. Hadzhibozheva., and Obsahuje bibliografii
In the present in vitro experiments we examined FSH- and ghrelin-induced changes in ovarian hormone secretion by transgenic rabbits. Fragments of ovaries isolated from adult transgenic (carrying mammary gland-specific mWAP-hFVIII gene) and non-transgenic rabbits from the same litter were cultured with and without FSH or ghrelin (both at 0, 1, 10 or 100 ng/ml medium). The secretion of progesterone (P4), estradiol (E2) and insulin-like growth factor I (IGF-I) was assessed by RIA. It was observed that ovaries isolated from transgenic rabbits secreted much less P4, E2 and IGF-I than the ovaries of non-transgenic animals. In control animals FSH reduced E2 (at doses 1-100 ng/ml medium) and IGF-I (at 1-100 ng/ml), but not P4 secretion, whereas ghrelin promoted P4 (at 1 ng/ml) and IGF-I (at 100 ng/ml), but not E2 output. In transgenic animals, the effects were reversed: FSH had a stimulatory effect on E2 (at 100 ng/ml) and ghrelin had an inhibitory effect on P4 (at 10 ng/ml). No differences in the pattern of influence of FSH on P4 and IGF-I and of ghrelin on E2 and IGF-I were found between control and transgenic animals. The present observations suggest that 1) both FSH and ghrelin are involved in rabbit ovarian hormone secretion, 2) transgenesis in rabbits is associated with a reduction in ovarian secretory activity, and 3) transgenesis can affect the response of ovarian cells to hormonal regulators., A. V. Sirotkin, P. Chrenek, K. Darlak, F. Valenzuela, Ž. Kuklová., and Obsahuje bibliografii a bibliografické odkazy