The androgens dehydroepiandrosterone sulfate, dehydroepiandrosterone, androstenedione and testosterone are routinely assessed in women, and circulating levels of these androgens reflect their production. These androgens are measured in most laboratories using various immuno-analytical methods. Recently, however, androgen assays have begun to be performed using gas or liquid chromatography combined with mass spectrometry. To better understand the difficulties and issues of androgen laboratory diagnostics, it is important to assess each of the methods used, how and why they were introduced into practice, and their advantages, limits, historic milestones and current status. It is also necessary to understand how reference ranges are determined and specifics arising from the physiology of individual androgens. Here we present a summary and discussion of these issues., M. Dušková, L. Kolátorová, L. Stárka., and Obsahuje bibliografii
The general population is potentially exposed to many chemicals that can affect the endocrine system. These substances are called endocrine disruptors (EDs), and among them bisphenol A (BPA) is one of the most widely used and well studied. Nonetheless, there are still no data on simultaneous measurements of various EDs along with steroids directly in the seminal fluid, where deleterious effects of EDs on spermatogenesis and steroidogenesis are assumed. We determined levels of BPA and 3 estrogens using LC-MS/MS in the plasma and seminal plasma of 174 men with different degrees of infertility. These men were divided according their spermiogram values into 4 groups: (1) healthy men, and (2) slightly, (3) moderate, and (4) severely infertile men. Estradiol levels differed across the groups and body fluids. Slightly infertile men have significantly higher BPA plasma and seminal plasma levels in comparison with healthy men (p<0.05 and p<0.01, respectively). Furthermore, seminal BPA, but not plasma BPA, was negatively associated with sperm concentration and total sperm count (-0.27; p<0.001 and -0.24; p<0.01, respectively). These findings point to the importance of seminal plasma in BPA research. Overall, a disruption of estrogen metabolism was observed together with a weak but significant impact of BPA on sperm count and concentration., J. Vitku, L. Sosvorova, T. Chlupacova, R. Hampl, M. Hill, V. Sobotka, J. Heracek, M. Bicikova, L. Starka., and Obsahuje bibliografii